Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(A=\frac{4x+3}{x-2}=\frac{2\left(x-2\right)+7}{x-2}=2+\frac{7}{x-2}\)
Để \(A\in Z\)thì \(7⋮x-2\)hay x-2 là Ư(7)={1;-1;7;-7}
Do đó:
x-2 | 1 | -1 | 7 | -7 |
x | 3 | 1 | 9 | -5 |
Vậy .....
Ta có : \(B=\frac{2x-15}{x+1}=\frac{2\left(x+1\right)-17}{x+1}=2-\frac{17}{x+1}\)
Để \(B\in Z\)thì \(17⋮x+1\)hay x+1 là Ư(17)={1;-1;17;-17}
Do đó :
x+1 | 1 | -1 | 17 | -17 |
x | 0 | -2 | 16 | -18 |
Vậy ................
Số số hạng là :
(2x - 2) : 2 + 1 = x - 1 + 1 = x (số)
Tổng là :
(2x + 2).x : 2 = 210
=> (2x2 + 2x) : 2 = 210
=> x2 + x = 210
=> x(x + 1) = 210
=> x(x + 1) = 20.21
=> x = 20
Vậy x = 20
Ta có : \(\frac{x}{2}=\frac{10}{x+1}\)
=> x(x + 1) = 10.2
=> x(x + 1) = 20
=> sai đề
a)\(\frac{x+11}{x-6}=\frac{x-6+17}{x-6}=\frac{x-6}{x-6}+\frac{17}{x-6}\)
=>x-6\(\in\) Ư(17)
x-6 | 1 | -1 | 17 | -17 |
x | 7 | 5 | 23 | -11 |