Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\frac{40-3x}{13-x}=\frac{39-3x+1}{13-x}=\frac{3\left(13-x\right)+1}{13-x}=3+\frac{1}{13-x}\)
Để C đạt giá trị lớn nhất thì \(\frac{1}{13-x}\) lớn nhất.
\(\frac{1}{13-x}\) lớn nhất khi 13 -x là số dương nhỏ nhất, hay 13 - x = 1 => x = 13 - 1 = 12
B=|x-2022|+|1-x|>=|x-2022+1-x|=2021
Dấu = xảy ra khi 1<=x<=2022
Sửa đề: Tìm GTNN
D = |x - 2022| + |x - 1|
= |x - 2022| + |1 - x|
≥ |x - 2022 + 1 - x| = 2021
Vậy GTNN của D là 2021
Sửa đề: Tìm GTNN
D = |x - 2022| + |x - 1|
= |x - 2022| + |1 - x|
≥ |x - 2022 + 1 - x| = 2021
Vậy GTNN của D là 2021
Cho biểu thức:
A=\(\frac{2004x+1}{2005x-2005}\)với x\(\ne\)1
Tìm số nguyên x để A đạt GTLN?Tìm GTLN đó
\(A=\frac{2004x+1}{2005x-2005}=\frac{2004x+1}{2005\left(x-1\right)}=\frac{2004\left(x-1\right)+2005}{2005\left(x-1\right)}=\frac{2004}{2005}+\frac{1}{x-1}\)
\(A_{max}\Leftrightarrow\frac{1}{x-1}max\)
Nếu x > 1 thì x-1 < 0 \(\Rightarrow\frac{1}{x-1}>0\)
Nếu x<1 thì x-1 <0 \(\Rightarrow\frac{1}{x-1}< 0\)
Xét \(x>1;\)ta có
\(\frac{1}{x-1}max\)=> x-1 là số nguyên dương nhỏ nhất
\(\Rightarrow x-1=1\Rightarrow x=2\left(t/m\right)\)
Vậy \(B_{max}=1\frac{2004}{2005}\Leftrightarrow x=2\)
Tìm GTNN chứ nhỉ e
\(D=\left|2022-x\right|+\left|x-1\right|\ge\left|2022-x+x-1\right|=2021\)
Dấu "=" xảy ra \(\Leftrightarrow\left(2022-x\right)\left(x-1\right)\ge0\)
\(\Leftrightarrow1\le x\le2022\)
Vậy Min D=2021 \(\Leftrightarrow1\le x\le2022\)