Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biến đổi M về dạng \(M=f\left(x\right)+\dfrac{n}{2x-3}\) như sau:
Cách 1: chia đa thức \(10x^2-7x-5\) cho \(2x-3\) ta được thương là \(5x+4\) dư là 7. Vậy:
\(M=5x+4+\dfrac{7}{2x-3}\)
Cách 2: Biến đổi M như sau:
\(M=\dfrac{10x^2-7x-5}{2x-3}=\dfrac{10x^2-15x+8x-12+7}{2x-3}\)
\(=\dfrac{5x\left(2x-3\right)+4\left(2x-3\right)+7}{2x-3}\)
\(=5x+4+\dfrac{7}{2x-3}\)
Sau đó các bước tiếp theo làm như bạn Nhật Linh.
- Để B có giá trị nguyên thì 2x-5 chia het 3x-9
=> 6x-15 chia hết 3x-9
=> 6x-18+18-15 chia hết 3x-9
=> 2.[3x-9]+3 chia hết 3x-9
=> 3 chia hết cho 3x-9
=> \(3x-9\inƯ\left[3\right]=\left\{-1;1;3;-3\right\}\)
=> \(x\in\left\{4;2\right\}\)
- Để A có giá trị nguyên thì 3x-4 chia het 2+x
=> 3x-4 chia hết x+2
=> 3x+6-6-4 chia hết x+2
=> 3.[x+2] -6-2 chia hết x+2
=> -8 chia hết x+2
=> \(x+2\inƯ\left[-8\right]=\left\{-1;1;2;-2;4;-4;-8;8\right\}\)
=> \(x\in\left\{-3;-1;0;-4;2;-6;-10;6\right\}\)
câu 1
a)\(ĐKXĐ:x^3-8\ne0=>x\ne2\)
b)\(\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2-2x+4\right)}{\left(x-2\right)\left(x^2-2x+4\right)}=\frac{3}{x-2}\left(#\right)\)
Thay \(x=\frac{4001}{2000}\)zô \(\left(#\right)\)ta được
\(\frac{3}{\frac{4001}{2000}-2}=\frac{3}{\frac{4001}{2000}-\frac{4000}{2000}}=\frac{3}{\frac{1}{2000}}=6000\)
a)Ta có:
3x2−4x−17x+2=3x−10+3x+23x2−4x−17x+2=3x−10+3x+2
Để phân thức là số nguyên thì 3x+23x+2 phải là số nguyên (với giá trị nguyên của x).
3x+23x+2 nguyên thì x +2 phải là ước của 3.
Các ước của 3 là ±1,±3±1,±3 . Do đó
x+2=±1=>x=−1,x=−3x+2=±1=>x=−1,x=−3
x+2=±3=>x=1,x=−5x+2=±3=>x=1,x=−5
Vậy x=−5;−3;−1;1.x=−5;−3;−1;1.
Cách khác:
3x2−4x−17x+2=(3x2+6x)−(10x+20)+3x+23x2−4x−17x+2=(3x2+6x)−(10x+20)+3x+2
=3x(
\(A=\frac{\left(x^4+4x^2+4\right)+\left(3x^3+6x\right)-\left(2x^2+4\right)-2}{x^2+2}\)
\(A=\frac{\left(x^2+2\right)^2+3x\left(x^2+2\right)-2\left(x^2+2\right)-2}{x^2+2}\)
\(A=\frac{\left(x^2+2\right)\left(x^2+3x\right)}{x^2+2}-\frac{2}{x^2+2}=x^2+3x-\frac{2}{x^2+2}\)
Để A là số nguyên, mà x là số nguyên nên \(x^2+3x\)nguyên, do đó \(\frac{2}{x^2+2}\inℤ\)
Do \(x^2+2\ge2\) nên \(x^2+2=2\Leftrightarrow x=0\)
a) Ta có : \(A=\frac{3x+5}{x+4}=\frac{3x+12-7}{x+4}=\frac{3\left(x+4\right)-7}{x+4}=3-\frac{7}{x+4}\)
Vì \(3\inℤ\Rightarrow\frac{-7}{x+4}\inℤ\Rightarrow-7⋮x+4\Rightarrow x+4\inƯ\left(-7\right)\)
=> \(x+4\in\left\{1;-1;-7;7\right\}\Rightarrow x\in\left\{-3;-5;-11;7\right\}\)
b) Ta có B = \(\frac{10x^2-7x-5}{2x-3}=\frac{10x^2-15x+8x-12+7}{2x-3}=\frac{5x\left(2x-3\right)+4\left(2x-3\right)+7}{2x-3}\)
\(=\frac{\left(5x+4\right)\left(2x-3\right)+7}{2x-3}=5x+4+\frac{7}{2x-3}\)
Vì \(\hept{\begin{cases}5x\inℤ\\4\inℤ\end{cases}\Rightarrow\frac{7}{2x-3}\inℤ\Rightarrow7⋮2x-3\Rightarrow2x-3\inƯ\left(7\right)\Rightarrow2x-3\in\left\{1;7;-1;-7\right\}}\)
=> \(x\in\left\{2;5;1;-2\right\}\)
đây là bt chia đa thức cho đa thức, bài này là tìm x để tử chia hit cho mẫu