Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để P nguyên \(\Rightarrow x-2⋮x+1\Rightarrow\left(x+1\right)-3⋮x+1\)
\(\Rightarrow3⋮x+1\)
\(\Rightarrow x+1\inƯ\) của 3
\(\Rightarrow x+1\in\left\{1;3;-1;-3\right\}\)
\(\Rightarrow x\in\left\{0;2;-2;-4\right\}\)
Vậy...
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau có:
\(\dfrac{x-1}{2005}=\dfrac{3-y}{2006}=\dfrac{x-1+3-y}{2005+2006}=\dfrac{x-y-1+3}{4011}=\dfrac{4009-1+3}{4011}=\dfrac{4011}{4011}=1.\)
Từ đó:
\(\dfrac{x-1}{2005}=1\Rightarrow x-1=2005\Rightarrow x=2006.\)
\(\dfrac{3-y}{2006}=1\Rightarrow3-y=2006\Rightarrow y=-2003.\)
Vậy \(x=2006;y=-2003.\)
a) \(\left(x-3\right)\left(x-2\right)< 0\)
Ta có : \(x-2>x-3\)
\(\Rightarrow\left\{{}\begin{matrix}x-3< 0\\x-2>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< 3\\x>2\end{matrix}\right.\Rightarrow2< x< 3\)
Vậy \(2< x< 3\)
b) \(3x+x^2=0\)
\(x\left(3+x\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\3+x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
Vậy \(x\in\left\{-3;0\right\}\)
a, Ta có: \(A=\left|x-1\right|+\left|x-2017\right|=\left|x-1\right|+\left|2017-x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A\ge\left|x-1+2017-x\right|=\left|-2016\right|=2016\)
Dấu " = " khi \(\left\{{}\begin{matrix}x-1\ge0\\2017-x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\le2017\end{matrix}\right.\Rightarrow1\le x\le2017\)
Vậy \(MIN_A=2016\) khi \(1\le x\le2017\)
b, Ta có: \(\left\{{}\begin{matrix}\left(x-5\right)^2\ge0\\\left|x-5\right|\ge0\end{matrix}\right.\Rightarrow\left(x-5\right)^2+\left|x-5\right|\ge0\)
\(\Rightarrow B=\left(x-5\right)^2+\left|x-5\right|+2014\ge2014\)
Dấu " = " khi \(\left\{{}\begin{matrix}\left(x-5\right)^2=0\\\left|x-5\right|=0\end{matrix}\right.\Rightarrow x=5\)
Vậy \(MIN_B=2014\) khi x = 5
b may cho chú là chung nghiệm là x=5 nếu (x-6)^2+|x-5| thì sao? cần phải nhớ (x-6)^2=|x-6|^2 sau đó áp dụng |a|+|b|>=|a+b|
\(\)\(A=2^0+2^1+2^2+2^3+...+2^{2012}\\ A=1+2+\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+...+\left(2^{2010}+2^{2011}+2^{2012}\right)\\ A=3+2^2\cdot\left(1+2+2^2\right)+2^5\cdot\left(1+2+2^2\right)+...+2^{2010}\cdot\left(1+2+2^2\right)\\ A=3+2^2\cdot\left(1+2+4\right)+2^5\cdot\left(1+2+4\right)+...+2^{2010}\cdot\left(1+2+4\right)\\ A=3+2^2\cdot7+2^5\cdot7+...+2^{2010}\cdot7\\ A=3+7\cdot\left(2^2+2^5+...+2^{2010}\right)\\ \)
1)Tìm x:
a)7x=9y và 10x-8y=68
Ta có:7x=9y \(\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\Rightarrow\dfrac{10x-8y}{9.10-7.8}=\dfrac{68}{34}=2\)
\(\Rightarrow\dfrac{x}{9}=2\Rightarrow x=2.9=18\)
\(\dfrac{y}{7}=2\Rightarrow y=2.7=14\)
a/ Ta có :
\(7x=9y\)
\(\Leftrightarrow\dfrac{7x}{63}=\dfrac{9y}{63}\)
\(\Leftrightarrow\dfrac{x}{9}=\dfrac{y}{7}\)
\(\Leftrightarrow\dfrac{10x}{90}=\dfrac{8y}{56}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{10x}{90}=\dfrac{8y}{56}=\dfrac{10x-8y}{90-56}=\dfrac{68}{34}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{10x}{90}=2\Leftrightarrow x=18\\\dfrac{8y}{56}=2\Leftrightarrow y=14\end{matrix}\right.\)
Vậy ................
\(\sqrt{x^2}.\left|x+2\right|=x\)
\(\Rightarrow x.\left|x+2\right|=x\)
\(\Rightarrow\left|x+2\right|=1\)
\(\Rightarrow\left[\begin{matrix}x+2=1\\x+2=-1\end{matrix}\right.\) \(\Rightarrow\)\(\left[\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)
zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
=> A=\(\frac{a+b+c}{b+c+a+c+a+b}\)=\(\frac{a+b+c}{2.\left(a+b+c\right)}\)
=> A=\(\frac{1}{2}\)
TH1:a+b+c=0
\(\)\(\Rightarrow\left\{\begin{matrix}b+c=-a\\a+c=-b\\a+b=-c\end{matrix}\right.\)
\(\Rightarrow A=\frac{a}{-a}=\frac{b}{-b}=\frac{c}{-c}=-1\)
TH2:\(a+b+c\ne0\)
Áp dụng tc dãy tỉ số bằng nhau ta có:
A=\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Vậy A=-1 hoặc A=\(\frac{1}{2}\)
Để A = \(\frac{3}{x-7}\) đạt giá trị nhỏ nhất
=> x-7 đạt giá trị lớn nhất và x-7 < 0 (1)
Vì x \(\in\) Z
=> x -7 \(\in\) Z (2)
Từ (1) và (2)
=> x - 7 = -1
=> x = -1 + 7
=> x = 6
Khi đó : A = \(\frac{3}{6-7}\)
=> A = \(\frac{3}{-1}\)
=> A = -3
Vậy Amin = -3 <=> x = 6
Để \(A_{Min}\)thì \(\frac{3}{x-7}\) nhỏ nhất
\(\Rightarrow x-7\) lớn nhất
Do \(\frac{3}{x-7}\Rightarrow\) \(x-7\inƯ\left(3\right)\)
Có \(Ư\left(3\right)\in\left\{1;3;-1;-3\right\}\)
Khi đó \(x-7=3\)
\(\Rightarrow x=10\)
Thay \(x=10\) vào ta có \(A=\frac{3}{10-7}=\frac{3}{3}=1\)
Vậy \(A_{Min}=3\Leftrightarrow x=10\)