Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(2009^{20}=\left(2009^2\right)^{10}=4036081^{10}< 20092009^{10}\)
Vậy \(2009^{20}< 20092009^{10}\)
\(\left(\dfrac{-5}{13}\right)^{2017}\cdot\left(\dfrac{13}{5}\right)^{2016}=\left(\dfrac{-5}{13}\right)\cdot\left(-\dfrac{5}{13}\right)^{2016}\cdot\left(\dfrac{13}{5}\right)^{2016}=\left(\dfrac{-5}{13}\right)\cdot\left(\dfrac{5}{13}\right)^{2016}\cdot\left(\dfrac{13}{5}\right)^{2016}=\left(-\dfrac{5}{13}\right)\cdot\left[\left(\dfrac{5}{13}\right)^{2016}\cdot\left(\dfrac{13}{5}\right)^{2016}\right]=\left(-\dfrac{5}{13}\right)\cdot1^{2016}=\left(-\dfrac{5}{13}\right)\cdot1=-\dfrac{5}{13}\)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k\)
\(y=3k\)
\(z=5k\)
Thay \(x=2k;y=3k;z=5k\) vào \(x.y.z=810\) ta được:
\(2k.3k.5k=810\)
\(30k^3=810\)
\(k^3=27\)
\(k^3=3^3\)
\(\Rightarrow k=3\)
\(\Rightarrow x=2k=2.3=6\)
\(y=3k=3.3=9\)
\(z=5k=5.3=15\)
Vậy \(x=6;y=9;z=15\)
Ta có: \(\left|x-1\right|+\left|x-5\right|=\left|x-1\right|+\left|5-x\right|\)
Nhận thấy: \(\left[{}\begin{matrix}\left|x-1\right|\ge x-1\\\left|5-x\right|\ge5-x\end{matrix}\right.\)
\(\Rightarrow\left|x-1\right|+\left|5-x\right|\ge x-1+5-x\)
\(\Rightarrow\left|x-1\right|+\left|5-x\right|\ge4\)
Dấu \("="\) xảy ra khi:
\(\left[{}\begin{matrix}x-1\ge0\\5-x\ge0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\ge1\\x\le5\end{matrix}\right.\) \(\Rightarrow1\le x\le5\)
Vậy \(1\le x\le5.\)
Cho mk thêm cái ạ:
\(x\in\left\{1;2;3;4;5\right\}\)
Vậy \(x\in\left\{1;2;3;4;5\right\}\)
Xét 2 t.h là ra mà bn : a âm - b dương
a dương -b âm ( loại vì thế k thỏa mãn bài )
minhf cũng làm theo cach này nhưng cô bảo là chưa chắc đã dc điểm
Ta có hình vẽ:
x x' O y y' \(\widehat{xOy}+\widehat{yOx'}+\widehat{x'Oy'}=297^o\)
\(\widehat{xOy}\) và \(\widehat{x'Oy'}\) đối đỉnh \(\Rightarrow\widehat{xOy}=\widehat{x'Oy'}\)
\(\widehat{x'Oy}\) và \(\widehat{x'Oy'}\) kề bù nên:
\(\widehat{x'Oy'}+\widehat{x'Oy}=180^o\)
\(\Rightarrow\widehat{xOy}+180^0=297^o\)
\(\Rightarrow\widehat{xOy}=117^o\)
\(\widehat{xOy}=\widehat{x'Oy'}=117^o\)
\(\Rightarrow\widehat{x'Oy}=297^o-117^o-177^o=3^o\)
\(\widehat{x'Oy}\) đối đỉnh với \(\widehat{xOy'}\) nên
\(\widehat{x'Oy}=\widehat{xOy'}=3^o\)
Vậy...
mình ra từ hồi chiều nhưng bây giờ mới rảnh để chỉ cho bạn, xin lỗi nhé
x - y = 2
<=> y = x - 2
\(A=xy+4\\ =x\left(x-2\right)+4\\ =x^2-2x+4\\ =\left(x-1\right)^2+3\)
có \(\left(x-1\right)^2\ge0\forall\)
=> (x-1)2 + 3 \(\ge3\)
=> (x-1)2 + 3 min = 3
=> A min = 3 (??, mình làm min đựoc thôi, còn max thì chịu)
bài kia cũng thế, thay y = x-2 vào rồi tính ra ???
Bn "Lưu Hiền" có thể nói cho mình biết tại sao lại :
x\(^2\)- 2x+4
=> ( x - 1)\(^2\)+3
Mình ko hiểu lắm.
17x + 4 chia hết cho 7
=> 14x + 3x + 4 - 7 chia hết cho 7
=> 14x + 3x - 3 chia hết cho 7
=> 14x + 3(x - 1) chia hết cho 7
Mà 14x chia hết cho 7 => 3(x - 1) chia hết cho 7
Lại có (3;7)=1 => x - 1 chia hết cho 7
=> x = 7.k + 1(k thuộc N)
em nên hỏi
ko nên luận cảnh
Điều kiện: \(\left\{\begin{matrix}x+1\ge0\\x-3>0\end{matrix}\right.\) \(\Rightarrow x>3\)
\(A=\frac{\sqrt{x+1}}{\sqrt{x-3}}\)
\(\Leftrightarrow A^2=\frac{x+1}{x-3}=1+\frac{4}{x-3}\)
Để A nguyên trước hết ta tìm giá trị x để cho A2 là nguyên trước đã hay (x - 3) là ước của 4.
\(\Rightarrow\left(x-3\right)=\left(-4,-2,-1,1,2,4\right)\)
\(\Rightarrow x=\left(-1,1,2,4,5,7\right)\)
\(\Rightarrow A^2=\left(5,6,8\right)\) (loại các giá trị x < 3)
Vậy không tồn tại giá trị x để A là số nguyên