Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(3x-1\right)⋮\left(x+1\right)\)
\(\Rightarrow\left(3x+3-4\right)⋮\left(x+1\right)\)
\(\Rightarrow\left(-4\right)⋮\left(x+1\right)\)
\(\Rightarrow x+1\inƯ\left(-4\right)=\left\{-4;-1;1;4\right\}\)
\(\Rightarrow x\in\left\{-5;-2;0;3\right\}\)
\(\left(2x-15\right)^5=\left(2x-15\right)^3\)
\(\Rightarrow\orbr{\begin{cases}2x-15=1\\2x-15=-1\end{cases}}\)Hoặc 2x - 15 = 0
<=> x = 8 hoặc x = 7 hoặc x = 15/2
Ơ chị k5 mà ạ ?
a, \(\frac{1}{2}-\frac{3}{5}x=4-\frac{1}{3}x\)
<=> \(\frac{1}{2}-\frac{3}{5}x+\frac{1}{3}x=4\)
<=>\(\frac{1}{2}-x.\left(\frac{3}{5}-\frac{1}{3}\right)=4\)
<=>\(\frac{1}{2}-\frac{4}{15}x=4\)
<=>\(\frac{4}{15}x=\frac{1}{2}-4\)
<=>\(\frac{4}{15}x=\frac{-7}{2}\)
<=> x = \(\frac{-7}{2}:\frac{4}{15}\)
<=> x = \(\frac{-7}{2}.\frac{15}{4}\)
<=> x = \(\frac{-105}{8}\)
b,\(\left(x^2-5\right).x^2=0\)
<=> \(x^2-5=0:x^2\)
<=>\(x^2-5=0\)
<=> \(x^2=5\)
<=> x = 5:x
c, 2 . I x - \(\frac{1}{2}\)I = \(\frac{-1}{3}+5\frac{1}{3}\)
<=>2 . I x - \(\frac{1}{2}\)I = \(\frac{-1}{3}+\frac{5}{3}\)
<=>2 . I x - \(\frac{1}{2}\)I = \(\frac{4}{3}\)
<=> I x - \(\frac{1}{2}\)I = \(\frac{4}{3}:2\)
<=> I x - \(\frac{1}{2}\)I = \(\frac{4}{3}.\frac{1}{2}\)
<=> I x - \(\frac{1}{2}\)I = \(\frac{2}{3}\)
=> x - \(\frac{1}{2}\)= \(\frac{2}{3}\)hoặc x - \(\frac{1}{2}\)= \(\frac{-2}{3}\)
TH1: x -\(\frac{1}{2}\) = \(\frac{2}{3}\)
<=> x = \(\frac{2}{3}\)+ \(\frac{1}{2}\)
<=> x = \(\frac{7}{6}\)
TH2: x - \(\frac{1}{2}\)= \(\frac{-2}{3}\)
<=> x = \(\frac{-2}{3}\)+ \(\frac{1}{2}\)
<=> x = \(\frac{-1}{6}\)
d) I 2x - 3 I - x = 6
=> 2x - 3 - x = 6 hoặc 2x - 3 - x = - 6
TH1:2x - 3 - x = 6
<=> x - 3 = 6
<=> x = 6 + 3
<=> x = 9
TH2: 2x - 3 - x = - 6
<=> x - 3 = -6
<=> x = - 6 + 3
<=> x = - 3
+ I 2x - 3 I
\(\Rightarrow41-\left(2x+5\right)=18\)
\(\Rightarrow2x+5=23\)
\(\Rightarrow2x=18\)
\(\Rightarrow x=9\)
bài 1 xem lại đề
bài 2 :
4n-5 chia hết cho n-1
=> 4n-4-1 chia hết cho n-1
=> 4(n-1)-1 chia hết cho n-1
=> 4(n-1) chia hết cho n-1 ; -1 chia hết cho n-1
=> n-1 thuộc Ư(-1)={-1,1}
=> n thuộc {0,2}
\(\frac{2x^2-10x+5}{x-5}=\frac{2x\left(x-5\right)+5}{x-5}=2x+\frac{5}{x-5}\)
Vì \(x\in Z\Rightarrow2x\in Z;x-5\in Z\)
Để \(2x^2-10x+5⋮x-5\)thì \(x-5\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow x\in\left\{6;4;10;0\right\}\)
Vậy ...
Từ đề bài, ta suy ra:
\(\frac{2x\left(x-5\right)+5}{\left(x-5\right)}\Leftrightarrow2x+\frac{5}{x-5}\)
Để phân thức nguyên thì \(\frac{5}{x-5}\in Z\)
Vậy \(\left(x-5\right)\inƯ\left(5\right)\)
\(\Rightarrow\left(x-5\right)\in\left\{\pm1;\pm5\right\}\)
\(\Rightarrow x\in\left\{4;6;0;10\right\}\)
Vậy ....