Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-1}{-6}=\frac{6}{1-x}\)
=> \(\hept{\begin{cases}x-1=6\\-6=1-x\end{cases}}\)
=> \(\hept{\begin{cases}x=7\\x=7\end{cases}\left(tmđb\right)}\)
Vậy x = 7
\(\frac{x}{3}-\frac{1}{y}=\frac{2}{6}\)
\(\frac{xy}{3y}-\frac{3}{3y}=\frac{1}{3}\)
\(\frac{xy-3}{3y}=\frac{1}{3}\)
=> 3 ( xy - 3 ) = 3y
=> xy - 3 = 3y
=> y ( x - 3 ) = 3 = 1 . 3 = 3 . 1 = (-1) . (-3) = (-3) . (-1)
Lập bảng tính x, y là xong
Ta có: \(\frac{x}{3}-\frac{1}{y}=\frac{2}{6}-\frac{1}{3}\)
Quy đồng mẫu hai vế ta có:
\(\frac{x}{3}-\frac{1}{y}=\frac{1}{3}\)
\(\frac{x.y}{3.y}-\frac{1.3}{y.3}=\frac{1.y}{3.y}\)
\(\frac{x.y}{3y}-\frac{3}{3y}=\frac{y}{3y}\)
\(\frac{xy}{3y}-\frac{y}{3y}=\frac{3}{3y}\)
\(\frac{xy-y}{3y}=\frac{3}{3y}\)
\(\Rightarrow xy-y=3\)
\(y.\left(x-1\right)=3\) \(\left[3=1.3=\left(-1\right).\left(-3\right)\right]\)
Vậy x = 4 thì y = 1.
x = 2 thì y = 3
x = -2 thì y = -1
x = 0 thì y = -3
a) 2 + x = 3
x = 3 - 2
x = 1
b) x + 6 = 0
x = 0 - 6
x = 0 + (-6)
x = -6
c) x + 7 = 1
x = 1 - 7 x
= 1 + (-7)
x = -6
a) 2+x=3 b) x+6=0 c) x+7=1
x = 3-2 x = 0-6 x =1-7
x=1 x = -6 x = -6
a)\(\left(\frac{1}{2}-\frac{1}{3}\right).6^x+6^{x+2}=6^{15}+6^{18}\)
\(\frac{1}{6}.6^x+6^{x+2}=6^{15}\left(1+6^3\right)\)
\(\frac{1}{6}.6^x\left(1+6^3\right)=6^{15}.217\)
\(6^{x-1}.217=6^{15}.217\)
\(6^{x-1}=6^{15}\)
\(x-1=15\)
\(x=16\)
b) \(\left(\frac{1}{2}-\frac{1}{6}\right).3^{x+4}-4.3^x=3^{16}-4.3^{13}\)
\(\frac{1}{3}.3^x.4\left(3^4-1\right)=3^{13}.4\left(3^3-1\right)\)
\(3^x.4.\left(3^3-1\right)=3^{13}.4.\left(3^3-1\right)\)
\(3^x=3^{13}\)
\(x=13\)
\(\left(\frac{1}{2}-\frac{1}{6}\right).\left(3^x.3^4\right)-4.3^x=3^{16}-4.3^{13}\)
=> \(\frac{1}{3}.3^x.3^4-4.3^x=3^{16}-4.3^{13}\)
=> \(3^x.3^4-4.3^x=\left(3^{16}-4.3^{13}\right):\frac{1}{3}\)
=> \(3^x.3^4-4.3^x=-386339074,3\)
=> \(3^x.\left(3^4-4\right)=-386339074,3\)
=> \(3^x.77=-386339074,3\)
=> \(3^x=-386339074,3:77\)
=> \(3^x=-5017390,575\)
=> x = ... chắc tự ngồi tính đc
Mình chỉ làm được bài một thôi:
BÀI 1: Giải
Gọi ƯCLN(a;b)=d (d thuộc N*)
=> a chia hết cho d ; b chia hết cho d
=> a=dx ; b=dy (x;y thuộc N , ƯCLN(x,y)=1)
Ta có : BCNN(a;b) . ƯCLN(a;b)=a.b
=> BCNN(a;b) . d=dx.dy
=> BCNN(a;b)=\(\frac{dx.dy}{d}\)
=> BCNN(a;b)=dxy
mà BCNN(a;b) + ƯCLN(a;b)=15
=> dxy + d=15
=> d(xy+1)=15=1.15=15.1=3.5=5.3(vì x; y ; d là số tự nhiên)
TH 1: d=1;xy+1=15
=> xy=14 mà ƯCLN(a;b)=1
Ta có bảng sau:
x | 1 | 14 | 2 | 7 |
y | 14 | 1 | 7 | 2 |
a | 1 | 14 | 2 | 7 |
b | 14 | 1 | 7 | 2 |
TH2: d=15; xy+1=1
=> xy=0(vô lý vì ƯCLN(x;y)=1)
TH3: d=3;xy+1=5
=>xy=4
mà ƯCLN(x;y)=1
TA có bảng sau:
x | 1 | 4 |
y | 4 | 1 |
a | 3 | 12 |
b | 12 | 3 |
TH4:d=5;xy+1=3
=> xy = 2
Ta có bảng sau:
x | 1 | 2 |
y | 2 | 1 |
a | 5 | 10 |
b | 10 | 5 |
.Vậy (a;b) thuộc {(1;14);(14;1);(2;7);(7;2);(3;12);(12;3);(5;10);(10;5)}
câu 1 x^2 +3x=xx+3x=x(x+3) vì x+3 chia hết cho x+3 nên x(x+3) chia hết cho x+3 hay x^2+3x chia hết cho x+3
\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)
\(\Leftrightarrow\frac{5.3}{3x}-\frac{y}{3}=\frac{1}{6}\)
\(\Leftrightarrow\frac{5.3}{3x}=\frac{1}{6}+\frac{y}{3}=\frac{1}{6}+\frac{2y}{6}\)
\(\Leftrightarrow\frac{15}{3x}=\frac{1+2y}{6}\)
\(\Rightarrow\hept{\begin{cases}15=1+2y\\3x=6\end{cases}\Rightarrow\hept{\begin{cases}15=1+2y\\x=2\end{cases}}}\)
Thế x = 2 vào,ta có:
\(\frac{15}{3.2}=\frac{15}{6}=\frac{1.2y}{6}\)
\(\Leftrightarrow\frac{15}{6}=\frac{2y}{6}\Rightarrow y=15:2=7,5=8\)
Ta có 1/3+1/6+1/10+....+1/x(x+1)=2004/2005
=>2/6+2/12+2/20+....+2/2x(x+1)=2004/2005
=>2[1/6+1/12+1/20+.......+1/2x(x+1)]=2004/2005
=> 2[1/2.3+1/3.4+1/4.5+.....+1/2x(x+1)] = 2004/2005
=>2[1/2 - 1/3+1/3 -1/4+1/4 - 1/5 +.....+1/2x - 1/(2x+2)] = 2004/2005
=>2[1/2 - 1/(2x+2)] = 2004/2005
=>x/(x+1) = 2004/2005 => x=2004
x = -2