Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mik chi la dc cau 2 thui
goi d la uoc chung cua (20n+9;30n+13)
(20n+9)chia het cho d (30n+13)chiahet cho d
(GIANG BAI:sau khi tinh ngoai nhap: UCLN cua (20n+9;30n+13) la 60)
luu y:ban ko ghi phan giang bai vao tap
3(20n+9) - 2(30n+13)
(60n+27) - (60n+26)
con 1 chia het d
suy ra:d thuoc U(1)={1}
suy ra:UCLN(20n+9 va 30n+13)=1
vay:20n+9 va 30n+13 la2 so nguyen cung nhau
chu thich:ban vui long thay chu suy ra bang dau suy ra trong toan hoc va thay chua chia het bang dau chia het trong toan hoc
câu 1:
Ta có :2n-1=2(n-3)+5
Để 2(n-3)+5 chia hết cho 2n-3 thì n-3 thuộc Ư(5) *vì 2(n-3) chia hết cho n-3*
Mà Ư(5)={1;-1;5;-5}
Ta có bảng sau:
n-3 -5 -1 1 5
n -2 2 4 8
Vậy n thuộc {-2;2;4;8}
1.
$4-n\vdots n+1$
$\Rightarrow 5-(n+1)\vdots n+1$
$\Rightarrow 5\vdots n+1$
$\Rightarrow n+1\in \left\{1; 5\right\}$
$\Rightarrow n\in \left\{0; 4\right\}$
2.
Nếu $n$ chẵn $\Rightarrow n+6$ chẵn.
$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$
Nếu $n$ lẻ $\Rightarrow n+3$ chẵn.
$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$
1. Ta có: A = 30 + 31 + 32 + ... + 3100
3A = 3.(1 + 3 + 32 + ... + 3100)
3A = 3 + 32 + 33 + ... + 3101
3A - A = (3 + 32 + 33 + ... + 3101) - (1 + 3 + 32 + ... + 3100)
2A = 3101 - 1
A = \(\frac{3^{101}-1}{2}\)
Vậy ...
Baif1 :
đặt \(A=3^0+3^1+3^2+...+3^{100}\)
\(\Rightarrow3A=3+3^2+3^3+...+3^{101}\)
\(\Rightarrow3A-A=\left(3+3^2+...+3^{101}\right)-\left(1+3+...+3^{100}\right)\)
\(\Rightarrow2A=3^{101}-1\)
\(\Rightarrow A=\frac{3^{101}-1}{2}\)
không có
(n-2)(n^2+n-1) nguyên tố thì n=3,
nhưng n+1=4 ko nguyên tố +> đề sai
1.n=3; (3.5.7)
2.n=4, (5.7.11,13,17,19)
3.abcabc
=10.abc+abc=11abc chia 11=abc
lam sao khang dinh chia het cho 17 duoc