tìm số nguyên tố x,y, z thỏa mãn (x+1).(y+2).(z+3)=x.y.z.4 help...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2021

Ta có (x + 1)(y + 2)(z + 3) = 4xyz

<=> \(\frac{\left(x+1\right)\left(y+2\right)\left(z+3\right)}{xyz}=4\)

<=> \(\frac{x+1}{x}.\frac{y+2}{y}.\frac{z+3}{z}=4\)

<=> \(\left(1+\frac{1}{x}\right)\left(1+\frac{2}{y}\right)\left(1+\frac{3}{z}\right)=4\)

=> \(\hept{\begin{cases}1⋮x\\2⋮y\\3⋮z\end{cases}}\); mà x;y;z \(\in P\)=> Không tìm được x;y;z thỏa mãn 

24 tháng 10 2021

thanks

20 tháng 12 2017

Ta có : \(x^4=y^2.z^2=x^2.z^2\)

Từ đẳng thức trên :

\(\Rightarrow x^2=y^2\Leftrightarrow x=y\left(1\right)\)

Thay x = y vào đẳng thức x4 = y2 . z2 ta có :

\(\Rightarrow x^4=x^2.z^2\Rightarrow x^4:x^2=z^2\Rightarrow x^2=z^2\Leftrightarrow x=z\left(2\right)\)

Từ (1) và (2)

=>x = y = z

Thay y;z bằng x vào biểu thức P ta có :

\(\Rightarrow P=\frac{\left(x+y\right).\left(y+z\right).\left(z+x\right)}{x.y.z}\)

\(\Rightarrow P=\frac{\left(x+x\right)\left(x+x\right)\left(x+x\right)}{x.x.x}=\frac{2x^3}{x^3}=2\)

Vậy biểu thức P = 2

24 tháng 12 2018

Ta có:7(x+y+z) chia hết cho 7 nên \(xyz⋮7\)

Mà 7 là số nguyên tố nên trong ba số x,y,z luôn có một số chia hết cho 7

Không mất tính tổng quát ta giả sử x chia hết cho 7 mà x là số nguyên tố nên x=7

Thay vào ta được:\(7\left(7+y+z\right)=7yz\)

\(\Rightarrow7+y+z=yz\Rightarrow yz-y-z+1=8\Rightarrow\left(y-1\right)\left(z-1\right)=8=1.8=2.4=\left(-1\right).\left(-8\right)\)

\(=\left(-2\right).\left(-4\right)\)

Bạn tự lập bảng xét nha,cuối cùng nếu có x,y,z thỏa mãn thì phải vậy x,y,z là hoán vị nha....

9 tháng 9 2019

Ta có x tỉ lệ thuận với y theo tỉ lệ là -2/5 nên là : x=-2/5y (1)

Tương tự y tỉ lệ thuận với z theo tỉ lệ là 1/4 nên là :y=1/4z (2)

ta thay z=5 vào (2) ta có: y=1/4 *5=5/4 hoặc y=5/4 (3)

Ta cho y=5/4 vào (1) ta có : x=-2/5* 5/4 =-1/2

Vậy x=-1/2

tao có x biểu diễn theo y là x=ay mà x=-1/2 và y=5/4 nên a= -2/5

Vậy x biểu diễn theo y là:x= -2/5y