\(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2018

Ta có: \(\left(0+1\right).f\left(0\right)+3f\left(1-0\right)=2.0+7\)

\(\Rightarrow f\left(0\right)+3f\left(1\right)=7\Rightarrow3f\left(0\right)+9f\left(1\right)=21\) (1)

\(\left(1+1\right)f\left(1\right)+3f\left(1-1\right)=2.1+7\)

\(\Rightarrow2f\left(1\right)+3f\left(0\right)=9\)(2)

Từ (1) và (2) ta được: \(3f\left(0\right)+9f\left(1\right)-2f\left(1\right)-3f\left(0\right)=21-9\)

\(\Rightarrow7f\left(1\right)=12\Rightarrow f\left(1\right)=\frac{12}{7}\)

Khi đó: \(f\left(0\right)=7-3f\left(1\right)=7-3.\frac{12}{7}=\frac{13}{7}\)

22 tháng 3 2016

/  / là giá trị tuyệt đối 

22 tháng 7 2016

a,\(\left(x-\frac{7}{9}\right)^3=\left(\left(\frac{2}{3}\right)^2\right)^3\)

\(x-\frac{7}{9}=\frac{4}{9}\)

\(x=\frac{4}{9}+\frac{7}{9}\)

\(x=\frac{11}{9}\)

Vậy x=\(\frac{11}{9}\)

12 tháng 8 2019

\(\left(x-\frac{3}{5}\right).\left(x+\frac{2}{7}\right)< 0\)

\(\Rightarrow\hept{\begin{cases}x-\frac{3}{5}< 0\\x+\frac{2}{7}>0\end{cases}\text{hoặc}\hept{\begin{cases}x-\frac{3}{5}>0\\x+\frac{2}{7}< 0\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}x< \frac{3}{5}\\x>-\frac{2}{7}\end{cases}\text{hoặc}\hept{\begin{cases}x>\frac{3}{5}\\x< -\frac{2}{7}\end{cases}}}\)

\(\Rightarrow\orbr{\begin{cases}-\frac{2}{7}< x< \frac{3}{5}\\x\in\varnothing\end{cases}}\)

\(\Rightarrow-\frac{2}{7}< x< \frac{3}{5}\)

\(\Rightarrow x=0\)

Vậy x = 0

12 tháng 8 2019

\(\left(x-\frac{3}{5}\right)\cdot\left(x+\frac{2}{7}\right)< 0\)

TH1 : \(\Rightarrow\hept{\begin{cases}x-\frac{3}{5}< 0\\x+\frac{2}{7}>0\end{cases}}\)                 \(\Rightarrow\hept{\begin{cases}x< \frac{3}{5}\\x>-\frac{2}{7}\end{cases}}\)              \(\Rightarrow\text{ }-\frac{2}{7}< x< \frac{3}{5}\)

TH2 : \(\Rightarrow\hept{\begin{cases}x-\frac{3}{5}>0\\x+\frac{2}{7}< 0\end{cases}}\)                 \(\Rightarrow\hept{\begin{cases}x>\frac{3}{5}\\x< -\frac{2}{7}\end{cases}}\)             \(\Rightarrow\text{ Không xảy ra}\)

                            Vì \(x\in Z\text{ }\Rightarrow\text{ }x=0\)