Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ở đây có 5 số đều là số nguyên tố: p, p+6, p + 8, p+12, p+14. Ta thử làm phép chia cho 5 xem số dư của chúng là bao nhiêu?
Viết lại 5 số như sau:
p ; p + 5 + 1; p + 5 + 3; p + 10 + 2; p + 10 + 4
=> Trong 5 số trên bao giờ cũng có 1 số chia hết cho 5, 1 số chia cho 5 dư 1; 1 số chia 5 dư 2; 1 số chia 5 dư 3; 1 số chia 5 dư 4.
=> Vậy để chúng đều là số nguyên tố thì p = 5 (vì số 5 là số chia hết cho 5 duy nhất và là số nguyên tố).
Khi đó 5 số trong đầu bài là:
5; 5 + 5 + 1 = 11; 5 + 5 + 3 = 13; 5 + 10 + 2 = 17; 5 + 10 + 4 = 19
đều là số nguyên tố
+Nếu p = 2 ⇒ p + 2 = 4 (loại)
+Nếu p = 3 ⇒ p + 6 = 9 (loại)
+Nếu p = 5 ⇒ p + 2 = 7, p + 6 = 11, p + 8 = 13, p + 12 = 17, p + 14 = 19 (thỏa mãn)
+Nếu p > 5, ta có vì p là số nguyên tố nên ⇒ p không chia hết cho 5 ⇒ p = 5k+1, p = 5k+2, p = 5k+3, p = 5k+4
-Với p = 5k + 1, ta có: p + 14 = 5k + 15 = 5 ( k+3) ⋮⋮ 5 (loại)
-Với p = 5k + 2, ta có: p + 8 = 5k + 10 = 5 ( k+2 ) ⋮⋮ 5 (loại)
-Với p = 5k + 3, ta có: p + 12 = 5k + 15 = 5 ( k+3) ⋮⋮ 5 (loại)
-Với p = 5k + 4, ta có: p + 6 = 5k + 10 = 5 ( k+2) ⋮⋮ 5 (loại)
⇒ không có giá trị nguyên tố p lớn hơn 5 thỏa mãn
Vậy p = 5 là giá trị cần tìm
Ta có : p + 10 = (p + 1) + 9
p + 14 = (p - 1) + 15
Xét 3 số liên tiếp : p - 1 ; p ; p + 1 có 1 và chỉ 1 số chia hết cho 3.
Nếu p - 1 ; p + 1 chia hết cho 3 thì p + 10 ; p + 14 chia hết cho 3( Trái với gt)
Vậy p chia hết cho 3, mà p nguyên tố nên p = 3
TH1:
Nếu p=2 thì p+10=12 ( không t/m y/c)
TH2:
Nếu p=3 thì p+10=13(t/m y/c)
p+14=17(t/m y/c)
=> a=3 t/m y/c
Nếu p<3,p thuộc số nguyên tố
p chia cho 3 dư 1 hoặc
Nếu p:3 dư 1 thì => 3k+1
Nếu p:3 dư 2 thì => 3k+2
Vậy p = 3
a/ Vì \(p\) là số nguyên tố
\(\Leftrightarrow p\in\left\{2;3;5;7;........\right\}\)
+) Với \(p=2\Leftrightarrow p+2=2+2=4\left(loại\right)\)
+) Với \(p=3\Leftrightarrow p+6=3+6=9\left(loại\right)\)
+) Với \(p=5\Leftrightarrow\left\{{}\begin{matrix}p+2=5+2=7\\p+6=5+6=11\\p+8=5+8=13\\p+14=5+14=19\end{matrix}\right.\) (Thỏa mãn)
+) Với \(p>5\) \(\Leftrightarrow\left[{}\begin{matrix}p=5k+1\\p=5k+2\\p=5k+3\\p=5k+4\end{matrix}\right.\)
+) \(p=5k+1\Leftrightarrow p+14=\left(5k+1\right)+14=5k+15⋮5\left(loại\right)\)
+) \(p=5k+2\Leftrightarrow p+8=\left(5k+2\right)+8=5k+10⋮5\left(loại\right)\)
+) \(p=5k+3\Leftrightarrow p+2=\left(5k+3\right)+2=5k+5⋮5\left(loại\right)\)
+) \(p=5k+4\Leftrightarrow p+6=\left(5k+4\right)+6=5k+10⋮5\left(loại\right)\)
Vậy \(p=5\)
Còn lại tương tự :vv