Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta xét một số CP khi chia 7 chỉ có thể dư 0;1;2;4
xét p=7 dễ thấy đó là số cần tìm
giả sử p2p2 chia 7 dư 1 => 3p2+43p2+4 chia hết cho 7 và lớn hơn 7 nên vô lí
tương tự với các TH p2p2 chia 7 dư 2, dư 4, ta đều suy ra điều vô lí
=> p chia hết cho 7 nên p=7
b/ biến đổi biểu thức đã cho trở thành 3(x−3)2+(3y2+2)(z2−6)=423(x−3)2+(3y2+2)(z2−6)=42
từ biểu thức trên suy ra z2−6z2−6 chia hết cho 3
xét z <3, ta có:
z=2=>z2−6=−2z2−6=−2 không chia hết cho 3
z=1=> z2−6=−5z2−6=−5 không chia hết cho 3
suy ra z≥3z≥3 => (3y2+2)(z2−6)>0(3y2+2)(z2−6)>0
suy ra (x−3)2≤9(x−3)2≤9 lần lượt xét các giá trị của (x−3)2(x−3)2 là 0;1;2;3 sau đó dựa vào (3y2+2)(3y2+2) chia 3 dư hai, ta tìm đk 3 cặp nghiệm:
(x;y;z)=(0;1;3);(6;1;3);(3;2;3)
Duyệt nha
Ta xét một số CP khi chia 7 chỉ có thể dư 0;1;2;4
xét p=7 dễ thấy đó là số cần tìm
giả sử p2p2 chia 7 dư 1 => 3p2+43p2+4 chia hết cho 7 và lớn hơn 7 nên vô lí
tương tự với các TH p2p2 chia 7 dư 2, dư 4, ta đều suy ra điều vô lí
=> p chia hết cho 7 nên p=7
b/ biến đổi biểu thức đã cho trở thành 3(x−3)2+(3y2+2)(z2−6)=423(x−3)2+(3y2+2)(z2−6)=42
từ biểu thức trên suy ra z2−6z2−6 chia hết cho 3
xét z <3, ta có:
z=2=>z2−6=−2z2−6=−2 không chia hết cho 3
z=1=> z2−6=−5z2−6=−5 không chia hết cho 3
suy ra z≥3z≥3 => (3y2+2)(z2−6)>0(3y2+2)(z2−6)>0
suy ra (x−3)2≤9(x−3)2≤9 lần lượt xét các giá trị của (x−3)2(x−3)2 là 0;1;2;3 sau đó dựa vào (3y2+2)(3y2+2) chia 3 dư hai, ta tìm đk 3 cặp nghiệm:
(x;y;z)=(0;1;3);(6;1;3);(3;2;3)
Duyệt nha
Câu 1 bạn dùng chia hết cho 13
Câu 2 bạn cộng cả 2 vế với z^4 rồi dùng chia 8
Câu 3 bạn đặt a^4n là x thì x sẽ chia 5 dư 1 và chia hết cho 4 hoăc chia 4 dư 1
Khi đó ta có x^2+3x-4=(x-1)(x+4)
đến đây thì dễ rồi
Câu 4 bạn xét p=3 p chia 3 dư 1 p chia 3 dư 2 là ra
Câu 6 bạn phân tích biểu thức của đề thành nhân tử có nhân tử x-2
Câu 5 mình nghĩ là kẹp giữa nhưng chưa ra
Bài này dễ thôi bạn !!!
Xét mọi p nguyên tố lẻ và p > 3=> p^2:3 dư 1 do 1 SCP : 3 dư 0 hoặc 1 và SCP đó không chia hết 3 do là SNT>3
=> 8p^2+1 chia hết cho 3 và > 3 do p > 3 => Là hợp số => Vô lí => Loại
Xét p=3 => 8p^2+2p+1=79 là SNT và 8p^2+1=73 là SNT lẻ (TMĐK)
=> ĐPCM.