![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(B=3+3^2+3^3+...+3^{120}\)
\(B=3\cdot1+3\cdot3+3\cdot3^2+...+3\cdot3^{119}\)
\(B=3\cdot\left(1+3+3^2+...+3^{119}\right)\)
Suy ra B chia hết cho 3 (đpcm)
b) \(B=3+3^2+3^3+...+3^{120}\)
\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+\left(3^5+3^6\right)+...+\left(3^{119}+3^{120}\right)\)
\(B=\left(1\cdot3+3\cdot3\right)+\left(1\cdot3^3+3\cdot3^3\right)+\left(1\cdot3^5+3\cdot3^5\right)+...+\left(1\cdot3^{119}+3\cdot3^{119}\right)\)
\(B=3\cdot\left(1+3\right)+3^3\cdot\left(1+3\right)+3^5\cdot\left(1+3\right)+...+3^{119}\cdot\left(1+3\right)\)
\(B=3\cdot4+3^3\cdot4+3^5\cdot4+...+3^{119}\cdot4\)
\(B=4\cdot\left(3+3^3+3^5+...+3^{119}\right)\)
Suy ra B chia hết cho 4 (đpcm)
c) \(B=3+3^2+3^3+...+3^{120}\)
\(B=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\left(3^7+3^8+3^9\right)+...+\left(3^{118}+3^{119}+3^{120}\right)\)
\(B=\left(1\cdot3+3\cdot3+3^2\cdot3\right)+\left(1\cdot3^4+3\cdot3^4+3^2\cdot3^4\right)+...+\left(1\cdot3^{118}+3\cdot3^{118}+3^2\cdot3^{118}\right)\)
\(B=3\cdot\left(1+3+9\right)+3^4\cdot\left(1+3+9\right)+3^7\cdot\left(1+3+9\right)+...+3^{118}\cdot\left(1+3+9\right)\)
\(B=3\cdot13+3^4\cdot13+3^7\cdot13+...+3^{118}\cdot13\)
\(B=13\cdot\left(3+3^4+3^7+...+3^{118}\right)\)
Suy ra B chia hết cho 13 (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
2a) với P=2 thì P+10=12
\(\Rightarrow\)p+10 là h/s( loại)
Với P=3 thì P+10=13; P+38=41
\(\Rightarrow\)tat cả đều là n/t
Với P>3 cơ 3p+1 hoặc 3k+2
+ Nếu P=3p+1 thì P+38=3p+1+39=3p+39\(⋮\)
Vậy P=3p+1 là không thỏa mãn
+ Nếu P= 3k+2 thì P+10=3k+2+10=3k+12\(⋮\)3
Vậy P=3k+2 là không thỏa mãn
Vậy P=3
b) với p=2 thì P+2=4
\(\Rightarrow\)p+2 là h/s ( loại)
Với P=3 thì p+6=9
\(\Rightarrow\)p+6 là h/s ( loại)
Với P=5 thì P+2=7; P+6=11; P+14=19; P+18=23
\(\Rightarrow\)tat cả đều là n/t
Với P>5 có 5p+1,5n+2,5k+3,5t+4
Với P=5p+1 thì P+14=5p+1+14=5p+15\(⋮\)5
Với P=5n+2 thì P+18=5n+2+18=5n+20\(⋮\)5
Với P=5k+3 thì P+2=5k+3+2=5k+5\(⋮\)5
Với P=5t+4 thì P+6=5t+4+6=5t+10\(⋮\)5
Vậy P=5
![](https://rs.olm.vn/images/avt/0.png?1311)
Với p bằng 2 suy ra p+4 bằng 6 là hợp số (loại)
Với p bằng 3 suy ra p+4 bằng 7 là SNT
p+8 bằng 11 là SNT (thỏa mãn)
Với p > 3 suy ra p có dạng 3k+1 hoặc 3k+2 (k thuộc N)
Nếu p bằng 3k+1 suy ra p+8 bằng 3k+1+8 bằng 3k+9 chia hết cho 3
Suy ra p+8 là hợp số (loại)
Nếu p bằng 3k+2 suy ra p+4 bằng 3k+2+4 bằng 3k+6 chia hết cho 3
Suy ra p+4 là hợp số (loại)
Kết luận: Vậy p bằng 3.
![](https://rs.olm.vn/images/avt/0.png?1311)
1) trả lời
4253 + 1422 =5775
mà 5775 chia hết cho 3;5
=>nó là hợp số
mình xin lỗi ấn nhầm bây giờ mk giải tiếp
giải
2) để 5x + 7 là số nguyên tố
=>5x+7 chia hết cho 5x+7 và 1
=>x thuộc (2;6)
3) trả lời
n.(n+1) là hợp số bởi vì
nếu n+1 là số lẻ=>n là số chẵn mà chẵn nhân với lẻ lại được số chẵn chia hết cho 2
nếu n+1 là số chẵn =>n là số lẻ mà lẻ nhân chẵn sẽ được số chẵn chia hết cho 2
mình xin lỗi mình chỉ làm dc thế thôi nhé, nếu bạn ko k thi thôi, ko sao
chào bạn
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 5
Nếu p lẻ thì 3p lẻ nên 3p+7 chẵn,mà 3p+7 lầ số nguyên tố
Suy ra 3p+7=2(L)
Khí đó p chẵn,mà p là số nguyên tố nên p=2
Vậy p=2
Câu 3
Ta có:\(\overline{ab}-\overline{ba}=9\times\left(a-b\right)=3^2\times\left(a-b\right)\)
Mà ab-ba là số chính phương nên 3^2X(a-b) là số chính phương
Suy ra a-b là số chính phương
Mà 0<a-b<9 nên \(a-b\in\left\{1;4\right\}\)
Với a-b=1 mà 0<b<a nên ta có bảng sau:
a | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
b | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Với a-b=4 mà a>b>0 nên ta có bảng sau:
a | 5 | 6 | 7 | 8 | 9 |
b | 1 | 2 | 3 | 4 | 5 |
Vậy ..............
Nếu p = 2 => 5p + 7 = 17 là số nguyên tố
Nếu p = 3 =>5p + 7 = 21 là hợp số (loại).
Nếu p >3 => p = 3k + l; p = 3k + 2 (k thuộc N). Khi đó 5p +7 là hợp số. Vậy p = 2.
Nếu p = 2 => 5p + 7 = 17 là số nguyên tố
Nếu p = 3 =>5p + 7 = 21 là hợp số (loại).
Nếu p >3 => p = 3k + l; p = 3k + 2 (k thuộc N). Khi đó 5p +7 là hợp số. Vậy p = 2.