\(2^p+1⋮p\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2016

Ta xét một số CP khi chia 7 chỉ có thể dư 0;1;2;4

xét p=7 dễ thấy đó là số cần tìm

giả sử p2p2 chia 7 dư 1 =>  3p2+43p2+4 chia hết cho 7 và lớn hơn 7 nên vô lí

tương tự với các TH p2p2 chia 7 dư 2, dư 4, ta đều suy ra điều vô lí

=> p chia hết cho 7 nên p=7

b/ biến đổi biểu thức đã cho trở thành 3(x−3)2+(3y2+2)(z2−6)=423(x−3)2+(3y2+2)(z2−6)=42

từ biểu thức trên suy ra z2−6z2−6 chia hết cho 3

xét z <3, ta có:

z=2=>z2−6=−2z2−6=−2 không chia hết cho 3

z=1=> z2−6=−5z2−6=−5 không chia hết cho 3

suy ra z≥3z≥3 => (3y2+2)(z2−6)>0(3y2+2)(z2−6)>0

suy ra (x−3)2≤9(x−3)2≤9 lần lượt xét các giá trị của (x−3)2(x−3)2 là 0;1;2;3 sau đó dựa vào (3y2+2)(3y2+2) chia 3 dư hai, ta tìm đk 3 cặp nghiệm:

(x;y;z)=(0;1;3);(6;1;3);(3;2;3)

Duyệt nha 

9 tháng 2 2016

Ta xét một số CP khi chia 7 chỉ có thể dư 0;1;2;4

xét p=7 dễ thấy đó là số cần tìm

giả sử p2p2 chia 7 dư 1 =>  3p2+43p2+4 chia hết cho 7 và lớn hơn 7 nên vô lí

tương tự với các TH p2p2 chia 7 dư 2, dư 4, ta đều suy ra điều vô lí

=> p chia hết cho 7 nên p=7

b/ biến đổi biểu thức đã cho trở thành 3(x−3)2+(3y2+2)(z2−6)=423(x−3)2+(3y2+2)(z2−6)=42

từ biểu thức trên suy ra z2−6z2−6 chia hết cho 3

xét z <3, ta có:

z=2=>z2−6=−2z2−6=−2 không chia hết cho 3

z=1=> z2−6=−5z2−6=−5 không chia hết cho 3

suy ra z≥3z≥3 => (3y2+2)(z2−6)>0(3y2+2)(z2−6)>0

suy ra (x−3)2≤9(x−3)2≤9 lần lượt xét các giá trị của (x−3)2(x−3)2 là 0;1;2;3 sau đó dựa vào (3y2+2)(3y2+2) chia 3 dư hai, ta tìm đk 3 cặp nghiệm:

(x;y;z)=(0;1;3);(6;1;3);(3;2;3)

Duyệt nha 

22 tháng 8 2016

Số đó là : 3 

Thay vào : \(2^3+3^2=17\)

22 tháng 8 2016

Nhiều số hay 1 số  z 

  • Uchiha Itachi
1. Giả sử p và q là các số nguyên sao cho: \(\frac{p}{q}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....-\frac{1}{1334}+\frac{1}{1335}\)CMR: \(P⋮2003\)2. CM:\(\forall n\in N,n\ge2\)thì\(An=2^{2^n}+4⋮10\)3.CM: \(\forall n\in N,n\ge1\)thì \(Bn=4^n+15n-1⋮9\)4.CM: \(\forall n\in Z,n\ge0\)thì \(Cn=2^{3^n}+1⋮3n+1\)nhưng \(⋮̸3^n+2\)5.CM:tổng hợp phương của 3 số tự nhiên liên tiếp n,n+1,n+2\(⋮9\forall n\ge0\)6. Cm: A=\(\frac{5^{125}-1}{5^{25}-1}\)không...
Đọc tiếp

1. Giả sử p và q là các số nguyên sao cho: \(\frac{p}{q}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....-\frac{1}{1334}+\frac{1}{1335}\)

CMR: \(P⋮2003\)

2. CM:\(\forall n\in N,n\ge2\)thì\(An=2^{2^n}+4⋮10\)

3.CM: \(\forall n\in N,n\ge1\)thì \(Bn=4^n+15n-1⋮9\)

4.CM: \(\forall n\in Z,n\ge0\)thì \(Cn=2^{3^n}+1⋮3n+1\)nhưng \(⋮̸3^n+2\)

5.CM:tổng hợp phương của 3 số tự nhiên liên tiếp n,n+1,n+2\(⋮9\forall n\ge0\)

6. Cm: A=\(\frac{5^{125}-1}{5^{25}-1}\)không phải là một số nguyên tố 

7.Tìm tất cả các số nguyên tố P sao cho tổng của tất cả các ước số tự nhiên của các phương trình là 1 số chính phương

8. Biết P và \(8p^2-1\)cũng là số nguyên tố

9. Tìm tất cả các số nguyên tố có 4 chữ số \(\overline{abcd}\)sao cho \(\overline{ab}\)\(\overline{ac}\)là các số nguyên tố và \(b^2=\overline{cd}+b-c\)

10.Cho \(\overline{abc}\)là 1 số nguyên tố. CM phương trình: \(ax^2+bx+c=0\)không có nghiệm hữu tỉ

 

0
15 tháng 8 2019

vì abcd,ab,ac là số nguyên tố nên là số lẻ hay b,c,d lẻ và khác 5. Ta có :

b2 = cd + b - c \(\Rightarrow\)b ( b - 1 ) = cd - c = 10c + d - c = 9c + d \(\ge\)10

\(\Rightarrow\)\(\ge\)\(\Rightarrow\) b = 7 hoặc b = 9

+) b = 7 ta có : 9c + d = 42 \(\Rightarrow\)\(⋮\)\(\Rightarrow\)d = 3 hoặc d = 9

Nếu d = 3 thì c = \(\frac{39}{9}\)( loại )

Nếu d = 9 thì c = \(\frac{33}{9}\)( loại )

+) b = 9 thì 9c + d = 72 \(\Rightarrow\)d = 9 ; c = 7 

Mà a7 và a9 là số nguyên tố thì a = 1

Vậy abcd = 1979