Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\text{Nếu p;q cùng lẻ thì:}7pq^2+p\text{ chẵn};q^3+43p^3+1\text{ lẻ}\Rightarrow\text{có ít nhất 1 số chẵn}\)
\(+,p=2\Rightarrow14q^2+2=q^3+345\Leftrightarrow14q^2=q^3+343\)
\(\Leftrightarrow q^2\left(14-q\right)=343\text{ đến đây thì :))}\)
\(+,q=2\Rightarrow29p=9+43p^3\Leftrightarrow29p-43p^3=9\text{loại}\)
\(+,p=q=2\Rightarrow7.8+2=8+43.8+1\left(\text{loại}\right)\)
Gọi 2 ps đó là a/b và c/d (ƯCLN (a,b) = 1; ƯCLN (c;d) = 1)
Ta có;
\(\frac{a}{b}+\frac{c}{d}=m\) (m thuộc Z)
=> \(\frac{ad+bc}{bd}=m\)
=> ad + bc = mbd (10
Từ (1) => ad + bc chia hết cho b
Mà bc chia hết cho b
=> ad chia hết cho b
Mà (a,b) = 1
=> d chia hết cho b (2)
Từ (1) => ad + bc chia hết cho d
Mà ad chia hết cho d
=> bc chia hết cho d
Mà (c,d) = 1
=> b chia hết cho d (3)
Từ (2) và (3) =>bh = d hoặc b = -d (đpcm)
Cảm ơn OLM đã trừ điểm https://olm.vn/thanhvien/kimmai123az, e rất ghi nhận sự tiến bộ về sự công bằng của olm.Nhưng vẫn còn nhìu cây mà con chó này copy nek, mong olm xét ạ https://olm.vn/hoi-dap/detail/228356929591.html////////https://olm.vn/hoi-dap/detail/228472453946.html/////https://olm.vn/hoi-dap/detail/228437567447.html//////////https://olm.vn/hoi-dap/detail/228435268921.html
Vô trangh cá nhân của e sẽ thấy đc những câu trả lời "siêu hay" của con chóhttps://olm.vn/thanhvien/kimmai123az
vì vai trò x,y như nhau nên giả sử \(a\ge b\)( a,b \(\ne\)0 )
đặt \(\frac{1}{p}=\frac{1}{a^2}+\frac{1}{b^2}=\frac{a^2+b^2}{a^2b^2}=\frac{1}{n}\)( n là số nguyên tố )
\(\Rightarrow a^2b^2=n\left(a^2+b^2\right)\)\(\Rightarrow a^2b^2-na^2-nb^2=0\)
\(\Rightarrow\left(a^2-n\right)\left(b^2-n\right)=n^2\)
Mà n là nguyên tố nên n2 có ước là 1 ; n ; n2
Xét các TH :
TH1 : \(\hept{\begin{cases}a^2-n=1\\b^2-n=n^2\end{cases}\Leftrightarrow\hept{\begin{cases}a^2=n+1\\b^2=n^2+n=n\left(n+1\right)\end{cases}}}\)( loại vì b2 = n(n+1) ( là tích 2 số nguyên liên tiếp )
TH2 : \(\hept{\begin{cases}a^2-n=n\\b^2-n=n\end{cases}\Leftrightarrow a^2=b^2=2n}\)
Mà n là số nguyên tố nên đặt n = 2k2 \(\Rightarrow\)k = 1 ( vì n là số nguyên tố )
\(\Rightarrow\)a = b = \(2\)