Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì p,q đều là số nguyên tố mà p-q cũng là số nguyên tố nên p và q khác tính chẵn lẻ.
Suy ra: q=2 (Vì p>q; p, q đều lad số nguyên tố)
+, Nếu p=3 : Thỏa mãn.
+, Nếu p>3 : Xét 2 TH: p=3k+1 (k thuộc N*) hoặc p=3k+2(k thuộc N*)
-p=3k+1 => p+q=3k+1+2=3k+3 là hợp số
-p=3k+2 : Tương tự có p-q là hợp số.
Vậy q=2, p=3.
Ta có 46y là số chẵn với mọi y.
Nếu x là SNT lớn hơn 2=> 59x lẻ=>59x+46y lẻ(ko thỏa mãn đề bài)
=>x chẵn. Mà chỉ có số 2 là SNT chẵn duy nhất =>x=2
=>y=(2004-59.2)/46=41
Số p có một trong ba dạng : 3k ; 3k + 1 ; 3k + 2 với k thuộc N*
Nếu p = 3k thì p = 3 ( vì p là số nguyên tố ), khi đó p + 2 = 5 ; p + 4 = 7 đều là các số nguyên tố.
Nếu p = 3k + 1 thì p + 2 = 3k + 3 chia hết cho 3 và lớn hơn 3 nên p + 2 là hợp số
Nếu p = 3k + 2 thì p + 4 = 3k + 6 chia hết cho 3 và lớn hơn 3 nên p + 4 là hợp số.
=> p = 3
vì các số nguyên tố đều là số lẻ (có số 2 là chẵn nhưng ở đây không làm cững biết là không thỏa mãn với yêu cầu đề bài rồi ) ta xét số 3
3+2=5 (là 1 số nguyên tố)
3+4=7(là 1 số nguyên tố)
vậy p=3
a) VD: \(a=4;b=5\) có \(a^2+b^2=4^2+5^2=16+25=41\) là số nguyên tố
Mà \(a+b=4+5=9\) là hợp số
\(\Rightarrow\)Mệnh đề " Nếu \(a^2+b^2\) là số nguyên tố thì \(a+b\)cũng là số nguyên tố " sai
b) Ta có : \(a^2-b^2=\left(a^2-ab\right)+\left(ab-b^2\right)\)
\(\Rightarrow a^2-b^2=a\left(a-b\right)+b\left(a-b\right)\)
\(\Rightarrow a^2-b^2=\left(a-b\right)\left(a+b\right)\)
+) Nếu \(a-b>1\)
\(\Rightarrow a^2-b^2⋮\left(a+b\right)\) và \(a^2-b^2⋮\left(a-b\right)\)
\(\Rightarrow a^2-b^2\) là hợp số
\(\Rightarrow\)Mâu thuẫn
\(\Rightarrow a-b=1\)
\(\Rightarrow a^2-b^2=a+b\)
Mà \(a^2-b^2\) là số nguyên tố
\(\Rightarrow a+b\) là số nguyên tố
\(\Rightarrow\) Mệnh đề : " Nếu \(a>b\) và \(a^2-b^2\)là số nguyên tố thì \(a+b\) cũng là số nguyên tố " đúng
Không vì nếu p lẻ thì p+5 chẵn =>p+5 là hợp số
nếu p lẻ thì p+10 chẵn =.p+10 là hợp số
- Nếu p là số nguyên tố chẵn (p = 2) thì p + 10 là số chẵn chia hết cho 2, là hợp số, loại
- Nếu p là số nguyên tố lẻ thì p + 5 là số chẵn chia hết cho 2, là hợp số, loại
Vậy không có số nguyên tố p thỏa mãn đề bài
a)nếu p=2 thì :
p+10=2+10=12 là hợp số(loại)
nếu p=3 thì:
p+10=3+10=13 là số nguyên tố
p+14=3+14=17 là số nguyên tố
(thỏa mãn)
nếu p>3 thì:
p sẽ bằng 3k+1 hoặc 3k+2
trường hợp 1:p=3k+1
nếu p=3k+1 thì:
p+14=3k+1+14=3k+15=3 nhân (k+5)chia hết cho 3(3 chia hết cho3) là hợp số(loại)
trường hợp 2:p=3k+2
nếu p=3k+2 thì:
p+10=3k+2+10=3k+12=3 nhân (k + 4)chia hết cho 3(3 chia hết cho 3)là hợp số (loại)
vậy nếu p>3 thì không có giá trị nào thỏa mãn
vậy p=3
b)nếu q=2 thì :
q+10=2+10=12 là hợp số(loại)
nếu q=3 thì:
q+2=3+2=5 là số nguyên tố
q+10=3+10=13 là số nguyên tố
(thỏa mãn)
nếu q>3 thì:
q sẽ bằng 3k+1 hoặc 3k+2
trường hợp 1:q=3k+1
nếu q=3k+1 thì:
q+2=3k+1+2=3k+3=3 nhân (k+1)chia hết cho 3(3 chia hết cho3) là hợp số(loại)
trường hợp 2:q=3k+2
nếu q=3k+2 thì:
q+10=3k+2+10=3k+12=3 nhân (k + 4)chia hết cho 3(3 chia hết cho 3)là hợp số (loại)
vậy nếu q>3 thì không có giá trị nào thỏa mãn
vậy q=3
a: p=3
b: q=3