K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2024

 Cho \(p=2,p=3\) ta thấy không thỏa mãn.

 Cho \(p=5\) ta thấy thỏa mãn.

 Xét \(p>5\), khi đó \(p⋮̸5\). Khi đó \(p^2\equiv1,4\left[5\right]\) (tính chất của scp)

 Khi \(p^2\equiv1\left[5\right]\) thì \(p^2+1⋮5\), khi \(p^2\equiv4\left[5\right]\) thì \(p^2+6⋮5\) nên 1 trong 2 số này là hợp số, không thỏa mãn.

 Vậy \(p=5\) là snt duy nhất thỏa mãn ycbt.

 

11 tháng 6 2024

    Đây là dạng toán nâng cao chuyên đề số nguyên tố, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau.

+ Nếu p = 2 ta có: p2 + 4 = 22 + 4  = 4 + 4 = 8 (loại)

+ Nếu p = 3 ta có: p2 + 6 =  32 + 6 = 9 + 6  =  15 (loại)

+ Nếu p = 5 ta có: p2 + 4 = 52 + 4  = 25 + 4  = 29 (thỏa mãn)

                             p2 + 6 = 52 + 6 = 25 + 6 = 31 (thỏa mãn)

+ Nếu p > 5 khi đó: p2 : 5 dư 1 hoặc 4 (tính chất số chính phương)

TH1 p2 :  5 dư 1 ⇒ p2 + 4 ⋮ 5 (là hợp số loại)

TH2 p2 : 5 dư 4 \(\Rightarrow\) p2 + 6 ⋮ 5 (là hợp số loại)

Từ những lập luận trên ta có: 

p = 5 là giá trị số nguyên tố duy nhất thỏa mãn đề bài 

Kết luận số nguyên tố thỏa mãn đề bài là 5.

               

31 tháng 7 2019

Đáp án A

Ta có

Do đó số chữ số của số đó là 2098959 + 1 = 2098960

13 tháng 6 2020

Ko phải đâu!

14 tháng 1 2019

24 tháng 6 2018

Đáp án B.

Ta có: Phần thực: –4, phần ảo: –3

Hai ý (3) và (4) sai.

22 tháng 5 2023

Giả thuyết Goldbach tam nguyên. Và chưa ai có thể chứng minh điều này.