\(\overline{abcd}\)sao cho\(\overline{ab};\overlin...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2017

Giải:

\(\overline{abcd},\overline{ab}\)\(\overline{ac}\) là các số nguyên tố

\(\Rightarrow b,c,d\) là các số lẻ khác \(5\)

Ta có:

\(b^2=\overline{cd}+b-c\Leftrightarrow b\left(b-1\right)=\overline{cd}-c\)

\(=10c+d-c=10c-c+d=9c+d\)

Do \(9c+d\ge10\) nên \(b\left(b-1\right)\ge10\)

\(\Rightarrow b\ge4\). Do đó \(\left[{}\begin{matrix}b=7\\b=9\end{matrix}\right.\)

Ta có các trường hợp sau:

\(*)\) Nếu \(b=7\) ta có:

\(9c+d=42⋮3\Rightarrow d⋮3\) \(\Rightarrow\left[{}\begin{matrix}d=3\\d=9\end{matrix}\right.\)

Với \(d=3\Rightarrow9c=39\Rightarrow\) Không tồn tại \(c\in N\)

Với \(d=9\Rightarrow9c+d⋮9\) còn \(42\) \(⋮̸\) \(9\) (loại)

\(*)\) Nếu \(b=9\) ta có:

\(9c+d=72⋮9\Rightarrow d⋮9\Rightarrow d=9\)

\(9c+9=72\Rightarrow9c=63\Rightarrow c=7\)

\(\overline{ab}=\overline{a9}\) là số nguyên tố \(\Rightarrow a\ne3;6;9;4\)

\(\overline{ac}=\overline{a7}\) là số nguyên tố \(\Rightarrow a\ne2;5;7;8\)

Mặt khác \(a\ne0\Rightarrow a=1\)

Vậy số cần tìm là \(1979\) (thỏa mãn số nguyên tố)

14 tháng 4 2017

giống hệt bài giải mẫu trên mạng

22 tháng 11 2016

số nguyên tố nhỏ nhất : 2

số lớn nhất có 1 chữ số : 9

số nguyên số chia hết cho 5 ( có 1 chữ số ) : 5

số nhỏ nhất chia hết cho 5 ( có 1 chữ số ) : 5

abcd = 2955

22 tháng 11 2016

Số nguyên tố nhỏ nhất là 2 => a = 2

Số lớn nhất có 1 chữ số là 9 => b = 9

Số nguyên tố chia hết cho 5 là 5 => c = 5

Số nhỏ nhất chia hết cho 5 là 0 => d = 0

abcd = 2950. Năm đó là năm 2950

Mình thấy nó vô lí thế nào ấy

25 tháng 5 2016

Tham khảo: cho a,b,c đôi một khác nhau và khác 0. Biết ab là số nguyên tố và ab/bc=b/c. tìm số abc- Mạng Giáo Dục Pitago.Vn – Giải pháp giúp em học toán vững vàng!

21 tháng 10 2016

mk thấy hình như phải nạp thẻ ms xem dc hết mà

21 tháng 10 2016

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{ab}{bc}=\frac{b}{c}=\frac{ab-b}{bc-c}=\frac{\left(10a+b\right)-b}{\left(10b+c\right)-c}=\frac{10a}{10b}=\frac{a}{b}\)

\(\Rightarrow b^2=a.c\)

Do ab nguyên tố nên b lẻ khác 5 \(\Rightarrow b\in\left\{1;3;7;9\right\}\)

+ Với b = 1 thì 12 = a.c = 1 => a = c = 1, vô lý vì \(a\ne b\ne c\)

+ Với b = 3 thì 32 = a.c = 9 \(\Rightarrow\left[\begin{array}{nghiempt}a=c=3\\a=1;c=9\\a=9;c=1\end{array}\right.\), ta chọn được 1 cặp giá trị (a;c) thỏa mãn \(a\ne b\ne c\) và ab nguyên tố là (1;9)

+ Với b = 7 thì 72 = a.c = 49 => a = c = 7, vô lý vì \(a\ne b\ne c\)

+ Với b = 9 thì 92 = a.c = 81 => a = c = 9, vô lý vì \(a\ne b\ne c\)

Vậy abc = 139

21 tháng 10 2016

Ta có:\(\frac{ab}{bc}=\frac{b}{c}\)(ab,bc có dấu gạch ngang trên đầu)

\(\Rightarrow\frac{10a+b}{10b+c}=\frac{b}{c}\)

\(\Rightarrow\left(10a+b\right)c=\left(10b+c\right)b\)

\(\Rightarrow10ac+bc=10b^2+bc\)

\(\Rightarrow10ac=10b^2\)

\(\Rightarrow ac=b^2\)

\(\Rightarrow abc=\) bao nhiêu tự tính(tui quên các chữ số đôi một là như thế nào rồi và abc có dấu gạch ngang trên đầu)

 

24 tháng 6 2023

Áp dụng tính chất của dãy tỉ số bằng nhau:

ab/ac =b/c= ab-b/bc-c =10a/10b

=>b² = a.c

Do ab là nguyên tố nên b lẻ khác 5. Mà b là chữ số.

=> b ∈ 1; 3; 7; 9

Ta xét các chữ số:

- Với b = 1 thì 1² = a.c ⇒ a = c = 1. ( loại vì a; b; c khác nhau ) 

- Với b = 3 thì 3² = a.c = 9, ta chọn được giá trị a = 1 và c = 9. ( nhận )

- Với b = 7 thì b² = a.c = 49, ta chỉ chọn được cặp giá trị a = c = 7 vì a và c là chữ số. ( loại )

- Với b = 9 thì 9²  a.c = 81, ta cũng chỉ chọn được cặp giá trị a = c = 9 vì a và c là chữ số. ( loại )

Vậy abc = 139.

16 tháng 1 2019

ta để dàng thấy được : \(a;b\) là 2 số lẽ khác \(5\)

\(\overline{\left(a+1\right)b}\) là số có 2 chữ số \(\Rightarrow\) \(a;b\) khác 9

\(\Rightarrow a;b\in\left\{1,3,7\right\}\)

\(\Rightarrow\left(a;b\right)=\left(1;1\right);\left(1;3\right)\left(1;7\right);\left(3;1\right);\left(3;3\right);\left(3;7\right);\left(7;1\right);\left(7;3\right)\left(7;7\right)\)

thay lại lần lược ta thấy \(\left(1;1\right);\left(1;3\right)\left(3;1\right);\left(3,7\right);\left(7;3\right)\) thõa mãn bài toán

vậy ...

15 tháng 1 2019

dễ thấy a;b=0 => loại
với a;b đồng thời bằng 1 => loại
=> a>=1 với
a=1 => (a+1)b= 2b là số nguyên tố => b=1
khi đó ab=1 => loại
=> a>1
*với a=2 =>ab=2b là số nguyên tố => b=1
=> (b+1)a=2a là số nguyên tố => a=1 (vô lý)
*với a>2 => a lẻ => a+1 chẵn => (a+1).b chia hết cho 2 và >2 => loại
vậy ko có số tự nhiên a;b thỏa mãn