Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}\)
\(A=3-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\right)\)
\(A=3-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\right)\)
\(A=3-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\right)\)
\(A=3-\left(1-\frac{1}{8}\right)\)
\(A=3-\frac{5}{8}\)
\(A=\frac{19}{8}\)
Mình chỉ làm được bài một thôi:
BÀI 1: Giải
Gọi ƯCLN(a;b)=d (d thuộc N*)
=> a chia hết cho d ; b chia hết cho d
=> a=dx ; b=dy (x;y thuộc N , ƯCLN(x,y)=1)
Ta có : BCNN(a;b) . ƯCLN(a;b)=a.b
=> BCNN(a;b) . d=dx.dy
=> BCNN(a;b)=\(\frac{dx.dy}{d}\)
=> BCNN(a;b)=dxy
mà BCNN(a;b) + ƯCLN(a;b)=15
=> dxy + d=15
=> d(xy+1)=15=1.15=15.1=3.5=5.3(vì x; y ; d là số tự nhiên)
TH 1: d=1;xy+1=15
=> xy=14 mà ƯCLN(a;b)=1
Ta có bảng sau:
x | 1 | 14 | 2 | 7 |
y | 14 | 1 | 7 | 2 |
a | 1 | 14 | 2 | 7 |
b | 14 | 1 | 7 | 2 |
TH2: d=15; xy+1=1
=> xy=0(vô lý vì ƯCLN(x;y)=1)
TH3: d=3;xy+1=5
=>xy=4
mà ƯCLN(x;y)=1
TA có bảng sau:
x | 1 | 4 |
y | 4 | 1 |
a | 3 | 12 |
b | 12 | 3 |
TH4:d=5;xy+1=3
=> xy = 2
Ta có bảng sau:
x | 1 | 2 |
y | 2 | 1 |
a | 5 | 10 |
b | 10 | 5 |
.Vậy (a;b) thuộc {(1;14);(14;1);(2;7);(7;2);(3;12);(12;3);(5;10);(10;5)}
a, 26/x + 3 nguyên
=> 26 ⋮ x + 3
=> x + 3 thuộc Ư(26)
=> x + 3 thuộc {-1; 1; -2; 2; -13; 13; -26; 26}
=> x thuộc {-4; -2; -5; -1; -16; 10; -29; 23}
vậy_
b, x+6/x+1 nguyên
=> x + 6 ⋮ x + 1
=> x + 1 + 5 ⋮ x + 1
=> 5 ⋮ x + 1
=> x + 1 thuộc Ư(5)
=> x + 1 thuộc {-1; 1; -5; 5}
=> x thuộc {-2; 0; -6; 4}
vậy_
c, x-2/x+3 nguyên
=> x - 2 ⋮ x + 3
=> x + 3 - 5 ⋮ x + 3
=> 5 ⋮ x + 3
=> x + 3 thuộc Ư(5)
=> x + 3 thuộc {-1; 1; -5; 5}
=> x thuộc {-4; -2; -8; 2}
vậy_
\(a,\frac{26}{x+3}\in Z\Leftrightarrow26\)\(⋮\)\(x+3\)\(\Rightarrow x+3\inƯ_{26}\)
Mà \(Ư_{26}=\left\{\pm1;\pm2;\pm13;\pm26\right\}\)\(\Rightarrow...\)
\(b,\frac{x+6}{x+1}=\frac{x+1+5}{x+1}=1+\frac{5}{x+1}\)
\(\frac{5}{x+1}\in Z\Leftrightarrow5\)\(⋮\)\(x+1\Rightarrow x+1\inƯ_5\)
MÀ \(Ư_5=\left\{\pm1;\pm5\right\}\)\(\Rightarrow...\)
\(c,\frac{x-2}{x+3}=\frac{x+3-3-2}{x+3}=1-\frac{5}{x+3}\)
\(\frac{5}{x+3}\in Z\Leftrightarrow\)\(5\)\(⋮\)\(x+3\Rightarrow x+3\inƯ_5\)
Mà \(Ư_5=\left\{\pm1;\pm5\right\}\)\(\Rightarrow...\)