Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để A có giá trị nguyên thì \(3n+9⋮n-4\)
\(\Rightarrow3n-9-3.\left(n-4\right)⋮n-4\)
\(\Rightarrow3n-9-3n+12⋮n-4\)
\(\Rightarrow3⋮n-4\Rightarrow n-4\inƯ\left(3\right)\)
\(\Rightarrow n-4\in\left\{-1;-2;-4;1;2;4\right\}\)
\(\Rightarrow n\in\left\{3;2;0;5;6;8\right\}\)
b) Để B có giá trị nguyên thì \(6n+5⋮2n-1\)
\(\Rightarrow6n+5-3.\left(2n-1\right)⋮2n-1\)
\(\Rightarrow6n+5-6n+3⋮2n-1\)
\(\Rightarrow8⋮2n-1\Rightarrow2n-1\inƯ\left(8\right)\)
Mà 2n - 1 là số lẻ \(\Rightarrow2n-1\in\left\{-1;1\right\}\)
\(\Rightarrow n\in\left\{0;1\right\}\)
* Để A có giá trị nguyên thì 3n + 9 chia hết cho n - 4
Có 3n + 9 = 3. ( n - 4 ) + 21 chia hết cho n - 4
Mà 3. ( n - 4 ) chia hết cho n - 4
3 . ( n - 4 ) + 21 chia hết cho n - 4 <=> 21 chia hết cho n - 4
=> n - 4 thuộc U ( 21 ) = { 1 ; 3 ; 7 ; 21 }
n - 4 = 1 => n = 5
n - 4 = 3 => n = 7
n - 4 = 7 => n = 11
n - 4 = 21 => n = 25
Vậy n = { 5 ; 7 ; 11 ; 25 }
a) \(A=\frac{3n+9}{n-4}=\frac{3n-12}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\) nguyê
<=> n - 4 \(\in\) Ư(21) = {-21; -7; -3; -1; 1; 3; 7; 21}
<=> n \(\in\) {-17; -3; 1; 3; 5; 7; 11; 25}
Bạn tự tính giá trị với mỗi n
b) Tương tự
Câu 1:
A)
a) Để \(\frac{-5}{n-2}\)đạt giá trị nguyên thì \(-5⋮n-2\)
Vì \(-5⋮n-2\Rightarrow n-2\inƯ\left(-5\right)=\left(\pm1;\pm5\right)\)
Ta có bảng giá trị:
n-2 | 1 | 5 | -1 | -5 |
n | 3 | 7 | 1 | -3 |
Đối chiếu điều kiện \(n\inℤ\Rightarrow n\in\left(3;7;1;-3\right)\)
Đến câu b,c cậu cũng lí luận để chứng minh tử phải chia hết cho mẫu, còn tớ chỉ cần tách và đưa ra kết quả thôi nhé
b) Ta có: \(n-5⋮n+1\)
\(\Rightarrow\left(n+1\right)-6⋮n+1\)
\(\Rightarrow-6⋮n+1\)
Vì \(-6⋮n+1\Rightarrow n+1\inƯ\left(-6\right)=\left(\pm1;\pm2;\pm3;\pm6\right)\)
Ta có bảng giá trị:
n+1 | 1 | 2 | 3 | 6 | -1 | -2 | -3 | -6 |
2 | 0 | 1 | 2 | 5 | -2 | -3 | -4 | 7 |
Đối chiếu điều kiện \(n\inℤ\Rightarrow\left(0;1;2;5;-2;-3;-4;-7\right)\)
c) Ta có: \(3n+7⋮n-1\)
\(\Rightarrow3\left(n-1\right)+10⋮n-1\)
\(\Rightarrow10⋮n-1\)
Vì \(10⋮n-1\Rightarrow n-1\inƯ\left(10\right)=\left(1;-1;2;-2;5;-5;10;-10\right)\)
Ta có bảng giá trị:
n-1 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
2 | 2 | 0 | 3 | -1 | 6 | -4 | 11 | -9 |
Đối chiếu điều kiện \(n\inℤ\Rightarrow n\in\left(2;0;3;-1;6;-4;11;-9\right)\)
B)
a) Gọi d là ƯC (2n+1;2n+2) \(\left(d\inℤ\right)\)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\2n+2⋮d\end{cases}}\) \(\Rightarrow\left(2n+2\right)-\left(2n+1\right)⋮d\) \(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow\)2n+1 và 2n+2 nguyên tố cùng nhau
\(\Rightarrow\frac{2n+1}{2n+2}\)là phân số tối giản
b) Gọi d là ƯC(2n+3;2n+5) \(\left(d\inℤ\right)\)
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\2n+5⋮d\end{cases}}\) \(\Rightarrow\left(2n+5\right)-\left(2n+3\right)⋮d\) \(\Rightarrow2⋮d\) \(\Rightarrow d=\left(1;2\right)\)
Vì 2n+3 và 2n+5 không chia hết cho 2
\(\Rightarrow d=1\)
\(\Rightarrow\)2n+5 và 2n+3 nguyên tố cùng nhau
\(\Rightarrow\frac{2n+3}{2n+5}\)là phân số tối giản
A=2(n-5)+11/n-5=2+11/n-5
để A là 1 số nguyên thì 11 chia hết cho n-5
hay n-5 thuộc ước của 11
n-5 thuộc 11;-11;1;-1
n thuộc 16;-6;6;4
kl:.....
Muốn A là số nguyên thì 2n + 1 chia hết cho n - 5
Suy ra 2n - 10 + 11 chia hết cho n - 5
Suy ra 2(n - 5) + 11 chia hết cho n - 5
Suy ra 11 chia hết cho n - 5
Suy ra n - 5 là ước của 11
Còn lại bạn làm nốt. Mình ngại làm lắm.
\(\frac{2n-1}{3n-4}\)
=\(\frac{\left(5-3\right)n-\left(5-4\right)n}{3n-4}\)
= \(\frac{5-3n-5n-4}{3n-4}\)
=\(\frac{5}{3n-4}-\frac{3n-4}{3n-4}\)
\(\Rightarrow\)3n - 4 thuộc Ư(5)
Ta có: Ư(5) = { -1;-5;1;5}
Do đó:
3n - 4 = -1
3n = -1 + 4
3n = 3
n = 3 : 3
n = 1
3n - 4 = -5
3n = -5 + 4
3n = -1
n = -1 : 3
n = rỗng
3n - 4 = 1
3n = 1 + 4
3n = 5
n = 5 : 3
n = rỗng
3n - 4 = 5
3n = 5 + 4
3n = 9
n = 9 : 3
n = 3
Vậy n = 1;3
Để \(\frac{2n-1}{3n-4}\)nguyên thì \(2n-1⋮3n-4\)
\(\Leftrightarrow3\left(2n-1\right)⋮3n-4\)
\(\Leftrightarrow6n-3⋮3n-4\)
\(\Leftrightarrow6n-8+5⋮3n-4\)
\(\Leftrightarrow5⋮3n-4\)
\(\Rightarrow3n-4\inƯ\left(5\right)\)
Vậy ta có bảng sau:
3n - 4 | 1 | -1 | 5 | -5 |
n | x | 1 | 3 | x |
Để C nguyên thì
\(n^2+2n-4⋮n+1\)
\(\Rightarrow n\left[n+1\right]+n-4⋮n+1\)
\(\Rightarrow n-4⋮n+1\)
\(\Rightarrow\left[n+1\right]-5⋮n+1\)
\(\Rightarrow5⋮n+1\)
=> n + 1 \(\in U\left[5\right]\in\left\{-5;-1;1;5\right\}\)
=> \(n\in\left\{-6;-2;0;4\right\}\)
\(C=\frac{n^2+2n+1-5}{n+1}=\frac{\left(n+1\right)^2-5}{n+1}=\left(n+1\right)-\frac{5}{n+1}\)
để C nguyên thì phân số \(\frac{5}{n+1}\)nguyên \(\Leftrightarrow\hept{\begin{cases}5⋮\left(n+1\right)\\n+1\le5\end{cases}\Leftrightarrow\hept{\begin{cases}5⋮\left(n+1\right)\\n\le4\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}n\le4\\\orbr{\begin{cases}n+1=1\\n+1=5\end{cases}}\end{cases}\Leftrightarrow\hept{\begin{cases}n\le4\\\orbr{\begin{cases}n=0\\n=4\end{cases}}\end{cases}\Leftrightarrow}\orbr{\begin{cases}n=0\\n=4\end{cases}}}\)