Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta co n^2+3=n(n-1)+n+3=n(n-1)+(n-1)+4=(n-1)(n+1)+4
do do de n^2+3 chia het cho n-1 thi n-1 phai thuoc uoc cua 4
bang gia tri
n-1 | -1 | 1 | -2 | 2 |
n | 0 | 2 | -1 | 3 |
do do n thuoc 0,2,-1,3 thi n^2+3 chia het n-1
a) \(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)=\left(3^n.3^2+3^n\right)-\left(2^n.2^2+2^n\right)\)
\(=\left[3^n.\left(3^2+1\right)\right]-\left[2^n.\left(2^2+1\right)\right]=\left(3^n.10\right)-\left(2^{n-1}.2.5\right)=\left(3^n.10\right)-\left(2^{n-1}.10\right)\)
Do: 3n . 10 chia hết cho 10 và 2n - 1 . 10 chia hết cho 10
=> ( 3n . 10 ) - ( 2n - 1 . 10 ) chia hết cho 10 => 3n + 2 - 2n + 2 + 3n - 2n chia hết cho 10
ta phải có n2+n+1 là ước của 3 mà n2+n+1 >0 nên n2+n+1=1 hoặc n2+n+1=3 nên n2+n=0 hoặc n2+n=2 tự giải tiếp nhé
Ta có \(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n.3^2-2^n.2^2+3^n-2^n\)
\(=3^n.\left(3^2+1\right)-2^n.\left(2^2+1\right)\)
\(=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.10\)
\(=10.\left(3^n-2^{n-1}\right)\)chia hết cho 10
Ta có 3n+2-2n+2+3n-2n
= 3n.9-2n.4+3n-2n
= 3n(9+1)-2n(4+1)
= 3n.10-2n.5=3n.10-2n-1.10
Nhận thấy 3n.10 chia hết cho 10 với mọi số nguyên dương n; 2n-1.10 chia hết cho 10 với mọi số nguyên dương n
=> 3n+2-2n+2+3n-2n chia hết cho 10 với mọi số nguyên dương n
xét n chia cho 3 dư 1 suy ra n=3q+1 (q là thương )
suy ra n^2=(3q+1)^2=(3q)^2+1^2+2.3q.1=9q^2+1+6q
ta có 9q^2+6q chia hết cho 3,mà 1 chia 3 dư 1
từ 2 điều trên suy ra n^2 chia 3 dư 1
xét n chia 3 dư suy ra n=3p+2 (p là thương)
suy ra n^2=(3p+2)^2=(3p)^2+2^2+2.3p.2=9p^2+4+12p
mà 9p^2+12p chia hết cho 3,mà 4 chia 3 dư 1
từ 2 điều trên suy ra n^2 chia 3 dư 1
vậy với mọi n thuộc N và n ko chia hết cho 3,n^2 luôn chia 3 dư 1
có chỗ nào ko hieu bn cứ hỏi mình,tab cho mình nếu đung nha
- Đề bài có sai không bạn , mình thử rồi mà k đc :))) bạn thử thử bằng n = 1 đi k ra đâu
Ta có \(n^2+3=n^2-1+4\)
mà \(n^2-1\)\(⋮\) \(n-1\)nên 4 chia hết cho n - 1
=> n - 1 \(\in\){ -4 ; - 2; - 1 ; 1 ; 2 ; 4}
=> n \(\in\){ -3; -1; 0; 2; 3; 5}
\(n^2+3⋮n-1\)
\(n^2-1+4⋮n-1\)
vì \(n^2-1⋮n-1\)
=>\(4⋮n-1\)
=> \(n-1\inƯ\left(4\right)\)
=. \(n-1\in[1,2,4,-1,-2,-4]\)
=> \(n\in[2,3,5,0,-1,-3]\)
Vậy ....