\(\frac{3n+11}{2n-1}\) cũng là số nguyên

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(B\inℤ\Leftrightarrow3n+11⋮2n-1\)

\(\Leftrightarrow n+12⋮2n-1\)

\(\Leftrightarrow2n+24⋮2n-1\)

\(\Leftrightarrow25⋮2n-1\)

\(\Leftrightarrow2n-1\inƯ\left(25\right)\)

Bạn tự giải tiếp nha!

Nhớ k cho mk đấy!

19 tháng 2 2019

tìm các số nguyên dương m,n sao cho \(\frac{3m-1}{2n}\)và \(\frac{3n-1}{2m}\)cùn là các số nguyên dương

19 tháng 2 2019

TH1 3m-1/2n là dương suy ra 3m-1 chia hết cho 2n

Để 3m-1 chia hết cho 2n suy ra 3m-1 là chẵn

                                           suy ra 3m là lẻ

                                           suy ra m là lẻ  và n có thể là bất kì số nào(n,m thuộc N)

TH2     

3n-1/2m là dương suy ra 3n-1 chia hết cho 2m

Để 3n-1 chia hết cho 2m suy ra 3n-1 là chẵn

                                           suy ra 3n là lẻ

                                           suy ra n là lẻ  và m có thể là bất kì số nào(n,m thuộc N)

vậy n,m là lẻ

19 tháng 2 2019

THỬ lại đi sai rùi

6 tháng 6 2020

a) *) \(\frac{n-1}{3-2n}\)

Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))

\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)

=> ƯCLN (n-1;3-2n)=1

=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên

*) \(\frac{3n+7}{5n+12}\)

Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)

\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)

\(\Rightarrow d=1\)

=> ƯCLN (3n+7;5n+12)=1

=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên

6 tháng 6 2020

b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)

\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)

Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên

2 nguyên => \(\frac{7}{n-1}\)nguyên

=> 7 chia hết cho n-1

n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng

n-1-7-117
n-6028

vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên

11 tháng 2 2020

a) Để phân số \(\frac{12}{3n-1}\)có giá trị là 1 số nguyên

\(\Rightarrow\)12\(⋮\)3n-1

\(\Rightarrow3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)

Tiếp theo bạn tìm số nguyên n như thường, nếu có giá trị là phân số thì bỏ nên bạn tự làm nhé!

b) Để phân số \(\frac{2n+3}{7}\)có giá trị là 1 số nguyên 

\(\Rightarrow\)2n+3\(⋮\)7

\(\Rightarrow\)2n+3=7k  

\(\Rightarrow n=\frac{7k-3}{2}\)

26 tháng 4 2017

\(\frac{2n-1}{3n-4}\)

=\(\frac{\left(5-3\right)n-\left(5-4\right)n}{3n-4}\)

\(\frac{5-3n-5n-4}{3n-4}\)

=\(\frac{5}{3n-4}-\frac{3n-4}{3n-4}\)

\(\Rightarrow\)3n - 4  thuộc Ư(5)

Ta có: Ư(5) = { -1;-5;1;5}

Do đó:

3n - 4 = -1

3n      = -1 + 4

3n      = 3

n        = 3 : 3

n        = 1

3n - 4 = -5

3n      = -5 + 4

3n      = -1

n        = -1 : 3

n        = rỗng

3n - 4 = 1

3n      = 1 + 4

3n      = 5

n        = 5 : 3

n        = rỗng

3n - 4 = 5

3n      = 5 + 4

3n      = 9

n        = 9 : 3

n        = 3

Vậy n = 1;3

26 tháng 4 2017

Để \(\frac{2n-1}{3n-4}\)nguyên thì \(2n-1⋮3n-4\)

\(\Leftrightarrow3\left(2n-1\right)⋮3n-4\)

\(\Leftrightarrow6n-3⋮3n-4\)

\(\Leftrightarrow6n-8+5⋮3n-4\)

\(\Leftrightarrow5⋮3n-4\)

\(\Rightarrow3n-4\inƯ\left(5\right)\)

Vậy ta có bảng sau:

3n - 41-15-5
nx13x
5 tháng 7 2021

Bài 1 :

\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)

\(\frac{5}{x}=\frac{1}{6}+\frac{y}{3}\)

\(\frac{5}{x}=\frac{1}{6}+\frac{2y}{6}\)

\(\frac{5}{x}=\frac{1+2y}{6}\)

=>  x ( 1+2y ) = 5 . 6 

=> x ( 2y+1 ) = 30 

=> x;2y+1 \(\in\) Ư(30)

vì 2y+1 là số lẻ nên 2y+1 \(\in\) {1;3;5;15;-1;-3;-5;-15}

             Ta có bảng 

2y+113515-1-3-5-15
x301062-30-10-6-2
y0127-1-2-3-8

Vậy các cặp x;y  tìm được là \(\hept{\begin{cases}x=30\\y=0\end{cases};\hept{\begin{cases}x=20\\y=2\end{cases}};\hept{\begin{cases}x=6\\y=2\end{cases};\hept{\begin{cases}x=2\\y=7\end{cases}};}\hept{\begin{cases}x=-30\\y=-1\end{cases};}\hept{\begin{cases}x=-10\\y=-2\end{cases};\hept{\begin{cases}x=-6\\y=-3\end{cases};\hept{\begin{cases}x=-2\\y=-8\end{cases}}}}}\) 

5 tháng 7 2021

Bài 2 , b 

(3n+2) \(⋮\) n-1

=> 3(n-1) + 5 \(⋮\) n-1

Vì 3(n-1) \(⋮\) n-1  => 5 \(⋮\) n-1

hay n-1 \(\in\) Ư(5)= {1;5;-1;-5}

 n \(\in\) {2;6;0;-4}

15 tháng 2 2018

gọi d là ƯC(3n-2; 4n-3)

\(\Rightarrow\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4\left(3n-2\right)⋮d\\3\left(4n-3\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}\)

\(\Rightarrow\) \(\left(12n-8\right)-\left(12n-9\right)\) \(⋮\) \(d\)

\(\Rightarrow\) \(12n-8-12n+9\) \(⋮\) \(d\)

\(\Rightarrow\) \(\left(12n-12n\right)+\left(9-8\right)\) \(⋮\) \(d\)

\(\Rightarrow\) \(0+1\) \(⋮\) \(d\)

\(\Rightarrow\) \(1\) \(⋮\) \(d\)

\(\Rightarrow\) \(d\inƯ\left(1\right)=1\)

\(\Rightarrow\) \(\text{3n-2 và 4n - 3 là 2 số nguyên tố cùng nhau}\)

\(\Rightarrow\) \(\frac{3n-2}{4n-3}\) là phân số tối giản

15 tháng 2 2018

1/ Đặt ƯCLN(3n - 2; 4n - 3) = d

=> \(3n-2⋮d\)và \(4n-3⋮d\)

hay \(4.\left(3n-2\right)⋮d\)và \(3.\left(4n-3\right)⋮d\)

hay \(12n-8⋮d\)và \(12n-9⋮d\)

\(\Leftrightarrow\left(12n-8\right)-\left(12n-9\right)⋮d\)

\(\Leftrightarrow12n-8-12n+9⋮d\)

\(\Leftrightarrow-8+9⋮d\)

Vậy \(1⋮d\)hay \(d\inƯ\left(1\right)=\left\{1\right\}\)

=> 3n - 2 và 4n - 3 là 2 số nguyên tố cùng nhau

=> phân số \(\frac{3n-2}{4n-3}\)tối giản.