Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm số nguyên n sao cho n +5 chia hết cho n-2. 3
tìm số nguyên n sao cho 2n +1 chia hết cho n -5 6
x + 7 là bội của x - 7
=> x + 7 chia hết cho x - 7
=> x - 7 + 14 chia hết cho 14
=> 14 chia hết cho x - 7
=> x - 7 thuộc Ư(14) = { -14 ; -7 ; -2 ; -1 ; 1 ; 2 ; 7 ; 14 }
x-7 | -14 | -7 | -2 | -1 | 1 | 2 | 7 | 14 |
x | -7 | 0 | 5 | 6 | 8 | 9 | 14 | 21 |
Các ý còn lại làm tương tự
Bài 2 : c)
+Nếu p = 2 ⇒ p + 2 = 4 (loại)
+Nếu p = 3 ⇒ p + 6 = 9 (loại)
+Nếu p = 5 ⇒ p + 2 = 7, p + 6 = 11, p + 8 = 13, p + 12 = 17, p + 14 = 19 (thỏa mãn)
+Nếu p > 5, ta có vì p là số nguyên tố nên ⇒ p không chia hết cho 5 ⇒ p = 5k+1, p = 5k+2, p = 5k+3, p = 5k+4
-Với p = 5k + 1, ta có: p + 14 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)
-Với p = 5k + 2, ta có: p + 8 = 5k + 10 = 5 ( k+2 ) ⋮ 5 (loại)
-Với p = 5k + 3, ta có: p + 12 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)
-Với p = 5k + 4, ta có: p + 6 = 5k + 10 = 5 ( k+2) ⋮ 5 (loại)
⇒ không có giá trị nguyên tố p lớn hơn 5 thỏa mãn
Vậy p = 5 là giá trị cần tìm
Bài 4 : Tích của hai số tự nhiên là số nguyên tố nên một số là 1, số còn lại (kí hiệu a) là số nguyên tố.
Theo đề bài, 1 + a cũng là số nguyên tố. Xét hai trường hợp :
- Nếu 1 + a là số lẻ thì a là số chẵn. Do a là ....
Còn lại bạn tự làm nha , mình mỏi tay quá !
Bài 1 :
\(\frac{3n+2}{n+1}=\frac{3\left(x+1\right)-1}{n+1}=\frac{-1}{n+1}\)
=> n + 1 \(\in\)Ư(-1) = {1;-1}
Tự lập bảng xét giá trị bn nhé !
Bài 2 :
\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)
\(\Leftrightarrow\frac{5}{x}=\frac{1}{6}+\frac{y}{3}\)
\(\Leftrightarrow\frac{5}{x}=\frac{1+2y}{6}\)
\(\Leftrightarrow30=x\left(1+2y\right)\)
Tự lập bảng nhé !
a) n+5 chia hết cho n-1
=>n-1+6 chia hết cho n-1
=>6 chia hết cho n-1
=> n-1 thuộc Ư(6)={1;2;3;6;-1;-2;-3;-6}
Bảng bn tự kẻ nha còn các câu khác làm tương tự
Bài 1
a) Ta có: a+5=a-2+7
=> 7 chia hết cho a-2 hay a-2 thuộc Ư (7)={-7;-1;1;7}
=> a={-5;1;3;9}
b) 3a=3(a-1)+3
=> 3 chia hết cho a-1 hay a-1 thuộc Ư (3)={-3;-1;1;3}
=> a={-2;0;2;4}
c) Ta có 5a-8=5(a-4)+12
=> 12 chia hết cho a-4
hay a-4 thuộc Ư (12)={-12;-6;-4;-3;-2;-1;1;2;3;4;6;12}
=> a={-8;-2;0;1;2;3;5;6;7;8;10;16}
Bài 2:
a) 4n-3 chia hết cho n
=> 3 chia hết cho n hay n thuộc Ư (3)={-3;-1;1;3}
b) -13 là bội của 2n-1
=> 2n-1 thuộc Ư (-13)={-13;-1;1;13}
=> 2n={-12;0;2;14}
=> n={-6;0;1;7}
câu 1 :
gọi UCLN (2n+3;n+2) là d
ta có :
2n+3 chia hết cho d
n+2 chia hết cho d => 2(n+2) chia hết cho d => 2n+4 chia hết cho d
=>(2n+4)-(2n+3) chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy UCLN(2n+3;n+2) =1
câu 2 :
a)
gọi hai số tự nhiên liên tiếp là a;a+1
gọi UCLN(a;a+1) là d
ta có : a chia hết cho d
a+1 chia hết cho d
=>(a+1)-a chia hết cho d
=>1 chia hết cho d
=>d=1
=>UCLN(a;a+1 )=1
=>a;a+1 nguyên tố cùng nhau
Vậy hai số tự nhiên liên tiếp nguyên tố cùng nhau
b) bạn xem lại đề VD : hai số lẻ là 15 và 27 ko nguyên tố cùng nhau nhé !
câu 3:
3n+14 chia hết cho n+2
=>3(n+2) + 8 chia hết cho n+2
=>n+2 thuộc U(8)={1;-1;2-2;4;-4;8;-8}
=>n thuộc {-1;-3;0;-4;2;-6;6;-10}
\(2n-1\)là bội của \(n+3\)\(\Rightarrow2n-1⋮n+3\)
Ta có: \(2n-1=2n+6-7=2\left(n+3\right)-7\)
Vì \(2\left(n+3\right)⋮n+3\)\(\Rightarrow\)Để \(2n-1⋮n+3\)thì \(7⋮n+3\)
\(\Rightarrow n+3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
\(\Rightarrow n\in\left\{-10;-4;-2;4\right\}\)
Vậy \(n\in\left\{-10;-4;-2;4\right\}\)
Theo đề bài, ta có: \(2n-1⋮n+3\)
\(\Rightarrow2\left(n+3\right)-7⋮n+3\)
\(\Rightarrow-7⋮n+3\)
Vì \(n\in Z\Rightarrow n+3\inƯ\left(-7\right)=\left\{\mp1;\mp7\right\}\)
Ta có bảng sau:
Vậy \(n\in\left\{-2;-4;4;-10\right\}\)