Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\left|x-3,5\right|\ge0\); \(\left|4,5-x\right|\ge0\)
=> \(\left|x-3,5\right|+\left|4,5-x\right|\ge0\)
Mà theo đề bài: \(\left|x-3,5\right|+\left|4,5-x\right|=0\)
=> \(\begin{cases}\left|x-3,5\right|=0\\\left|4,5-x\right|=0\end{cases}\)=> \(\begin{cases}x-3,5=0\\4,5-x=0\end{cases}\)=> \(\begin{cases}x=3,5\\x=4,5\end{cases}\), vô lý vì x không thể cùng đồng thời nhận 2 giá trị khác nhau
Vậy không tồn tại giá trị của x thỏa mãn đề bài
a. \(25.5^3.\frac{1}{625}.5^2=5^2.5^3.\frac{1}{5^4}.5^2=\frac{5^7}{5^4}=5^3\)
b. \(4.32:\left(2^3.\frac{1}{16}\right)=2^2.2^5:2^3:\frac{1}{2^4}=\frac{2^4}{2^4}=1\)
c. \(5^2.3^5.\left(\frac{3}{5}\right)^2=5^2.3^5.3^2.\frac{1}{5^2}==\frac{5^2}{5^2}.3^7=3^7\)
d. \(\left(\frac{1}{7}\right)^2.\frac{1}{7}.49^2=\frac{1}{7^3}.7^4=\frac{7^4}{7^3}=7\)
Vì |x−2013|≥0⇒|x−2013|+2≥2
⇒A=\(\frac{2026}{\left|x-2013\right|+2}\) ≤1013
=>A đạt giá trị lớn nhất là 1013 khi |x−2013|=0
⇔x−2013=0
⇔x=2013
Vậy A đạt giá trị lớn nhất là 1013 khi x=2013
Câu hỏi của Nguyễn Quỳnh Chi - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo nhé!
Ta có hình vẽ:
O A B D C m n
a) Vì góc AOB và AOD là 2 góc kề bù nên OB và OD là 2 tia đối nhau (1)
Vì góc AOB và BOC là 2 góc kề bù nên OA và OC là 2 tia đối nhau (2)
Từ (1) và (2) => BOC và AOD là 2 góc đối đỉnh (đpcm)
b) Gọi Om, On lần lượt là tia phân giác của AOD và BOC
\(\Rightarrow\begin{cases}AOm=mOD=\frac{AOD}{2}\\BOn=nOC=\frac{BOC}{2}\end{cases}\)
Mà AOD = BOC (đối đỉnh)
Do đó, \(AOm=mOD=BOn=nOC\)
Lại có: AOD + AOB = 180o (kề bù)
=> DOm + mOA + AOB = 180o
=> BOn + mOA + AOB = 180o
Mà BOn, mOA, AOb là các góc tương ứng kề nhau và không có điểm trong chung nên mOn = 180o hay Om và On là 2 tia đối nhau (đpcm)
\(n^{150}< 5^{225}\)
\(\Rightarrow n^{150}=\left(n^2\right)^{75}\)
\(\Leftrightarrow\left(n^2\right)^{75}< \left(5^3\right)^{75}\)
\(\Rightarrow n^2< 125\)
\(\Rightarrow n< 12\)
\(\left|x-3,5\right|+\left|4,5-x\right|=0\)
\(\Rightarrow\left|x-3,5\right|=\left|4,5-x\right|\)
\(\Rightarrow x-3,5=4,5-x\)
\(\Rightarrow x+x=4,5+3,5\)
\(\Rightarrow2x=8\)
\(\Rightarrow x=4\)