Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:\(17⋮2a+3\)
\(\Rightarrow2a+3\inƯ\left(17\right)\)
\(\Rightarrow2a+3\in\left\{1;-1;17;-17\right\}\)
\(\Rightarrow2a\in\left\{-2;-4;14;-20\right\}\)
\(\Rightarrow a\in\left\{-1;-2;7;-10\right\}\)
Bài 2: \(n-6⋮n-1\)
\(\Rightarrow n-1-5⋮n-1\)
Vì \(n-1⋮n-1\)nên \(5⋮n-1\)
\(\Rightarrow n-1\inƯ\left(5\right)\)
\(\Rightarrow n-1\in\left\{1;-1;5;-5\right\}\)
\(\Rightarrow n\in\left\{2;0;6;-4\right\}\)
Xong rùi, Chúc họk tốt
Vì a nguyên => 2a+3 nguyên
=> 2a+3 thuộc Ư (17)={-17;-1;1;17}
Ta có bảng
2a+3 | -17 | -1 | 1 | 17 |
2a | -20 | -4 | -2 | 14 |
a | -10 | -2 | -1 | 7 |
b) Ta có n-6=n-1-5
Vì n nguyên => n-1 nguyên => n-1 thuộc Ư (5)={-5;-1;1;5}
Ta có bảng
n-1 | -5 | -1 | 1 | 5 |
n | -4 | 0 | 2 | 6 |
a) ta có: n+2 chia hết cho n-3
=>(n-3)+5 chia hết cho n-3
Mà n-3 chia hết cho n-3
=>5 chia hết cho n-3
=> n-3 thuộc Ư(5)={1;5;-1;-5}
=> n thuộc {4;8;2;-2}
b) Ta có: 6n+1 chia hết cho 3n-1
=>(6n-2)+2+1 chia hết cho 3n-1
=>2(3n-1) +3 chia hết cho 3n-1
Mà 2(3n-1) chia hết cho 3n-1
=> 3 chia hết cho 3n-1
=> 3n-1 thuộc Ư(3)={1;3;-1;-3}
=> 3n thuộc {2;4;0;-2}
=>n thuộc {2/3 ; 4/3 ; 0 ; -2/3}
Mà n thuộc Z
=>n=0
a) ta có: 17 chia hết cho 2a + 3
=> 2a + 3 thuộc Ư(17)={1;-1;17;-17}
nếu 2a + 3 = 1 => 2a = 2 => a = 1 (TM)
...
bn tự xét tiếp nha
b) ta có: n - 6 chia hết cho n - 1
=> n - 1 - 5 chia hết cho n - 1
mà n - 1 chia hết cho n - 1
=> 5 chia hết cho n - 1
=>....
bệnh lười tái phát :)) chỉ lm 1 câu
\(n-8⋮n-3\)
\(n-3-5⋮n-3\)
\(-5⋮n-3\)
\(\Rightarrow n-3\inƯ\left(-5\right)=\left\{\pm1;\pm5\right\}\)
tự lập bảng ...
a)có:n-8=(n-3)-5 Mà N-3 chia hết cho n-3 =>-5 chia hết cho n-3 =>n-3 e {5;-5;1;-1} =>n e {8;-2;4;2} b)có:n+7=(n+2)+5 Mà n+2 chc n+2 =>5 chc n+2 =>n e {3;-7;-1;-3} c) có:n-7=(n-4)-3 (lm như câu a) e: thuộc ;chc:chia hết cho HOK TỐT
3/ => a(b-2) thuộc Ư(3) = {1;3;-1;-3}
Mà a > 0
=> a thuộc {1;3}
Ta có bảng kết quả:
a | 1 | 3 |
---|---|---|
b-2 | 3 | 1 |
b | 5 | 3 |
\(a,n+3⋮n\)
mà \(n⋮n\Rightarrow n\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(b,2n+3⋮n\)
mà \(2n⋮n\Rightarrow n\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(c,3n-1⋮n+1\)
\(\Rightarrow3n+3-2⋮n+1\)
\(\Rightarrow3\left(n+1\right)-2⋮n+1\)
\(\Rightarrow n+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\Rightarrow n\in\left\{0;-2;1;-3\right\}\)
2n+1 \(⋮\)n - 3
<=> 2n - 6 + 7 \(⋮\)n - 3
Vì 2n - 6 \(⋮\)n - 3 mà 2n - 6 + 7 \(⋮\)n - 3 nên :
=> 7 \(⋮\)n - 3
=> n - 3 \(\in\){ -1;-7:1;7}
=> n \(\in\){ 2;-4;4;10}