Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{8n+193}{4n+3}=\frac{8n+6+187}{4n+3}=2+\frac{187}{4n+3}\inℕ\)mà \(n\inℕ\)
suy ra \(4n+3\inƯ\left(187\right)\Rightarrow4n+3\in\left\{11;17;187\right\}\)(vì \(4n+3\ge3\))
\(\Rightarrow n\in\left\{2;46\right\}\).
b) \(\frac{8n+193}{4n+3}=\frac{8n+6+187}{4n+3}=2+\frac{187}{4n+3}\)rút gọn được khi \(\frac{187}{4n+3}\)rút gọn được.
Ta có: \(187=11.17\)suy ra \(\orbr{\begin{cases}\left(4n+3\right)⋮11\\\left(4n+3\right)⋮17\end{cases}}\)
- \(4n+3=11k\Leftrightarrow n=\frac{11k-3}{4}\)
\(150< n< 170\Rightarrow150< \frac{11k-3}{4}< 170\Rightarrow55\le k\le62\)
ta có các giá trị của \(n\)thỏa mãn là: \(156,167\).
- \(4n+3=17k\)xét tương tự, thu được các giá trị \(n\)thỏa mãn là: \(165\)
Vậy các giá trị của \(n\)thỏa mãn là: \(156,165,167\).
a) \(A=\frac{8n+193}{4n+3}\)
\(A=\frac{8n+6+187}{4n+3}\)
\(A=2+\frac{187}{4n+3}\)
Để A là số tự nhiên thì \(187⋮4n+3\)
\(\Rightarrow4n+3\inƯ\left(187\right)=\left\{\text{±}1;\text{±}11;\text{±}17;\text{±}187\right\}\)
mà A là số tự nhiên
\(4n+3\in\left\{1;11;17;187\right\}\)
Ta có bảng sau:
4n+3 | 1 | 11 | 17 | 187 |
4n | -2 | 8 | 14 | 184 |
n | -0,5 | 2 | 3,5 | 46 |
Vậy \(n\in\left\{-0,5;2;3,5;46\right\}\)
mà n là số tự nhiên
\(\Rightarrow n\in\left\{2;46\right\}\)
Câu b, c thì chịu. ☺
a) Gọi ƯCLN ( 8n + 193; 4n + 3) = d
=> ( 8n + 193; 4n + 3 ) : d => (8n + 193) - 2.(4n+3)
=> ( 8n+193 ) - ( 8n + 6 ) : d
=> 187 : d mà A là phân số tối giản => A ≠ 187
=> n ≠ 11k + 2 (k ∈ N)
=> n ≠ 17m + 12 (m ∈ N )
b) n = 156 => A = 77/19
n = 165 => A = 89/39
n = 167 => A = 139/61