Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\frac{3n+9}{n-4}=\frac{3n-12}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\) nguyê
<=> n - 4 \(\in\) Ư(21) = {-21; -7; -3; -1; 1; 3; 7; 21}
<=> n \(\in\) {-17; -3; 1; 3; 5; 7; 11; 25}
Bạn tự tính giá trị với mỗi n
b) Tương tự
a) Để A có giá trị nguyên thì \(3n+9⋮n-4\)
\(\Rightarrow3n-9-3.\left(n-4\right)⋮n-4\)
\(\Rightarrow3n-9-3n+12⋮n-4\)
\(\Rightarrow3⋮n-4\Rightarrow n-4\inƯ\left(3\right)\)
\(\Rightarrow n-4\in\left\{-1;-2;-4;1;2;4\right\}\)
\(\Rightarrow n\in\left\{3;2;0;5;6;8\right\}\)
b) Để B có giá trị nguyên thì \(6n+5⋮2n-1\)
\(\Rightarrow6n+5-3.\left(2n-1\right)⋮2n-1\)
\(\Rightarrow6n+5-6n+3⋮2n-1\)
\(\Rightarrow8⋮2n-1\Rightarrow2n-1\inƯ\left(8\right)\)
Mà 2n - 1 là số lẻ \(\Rightarrow2n-1\in\left\{-1;1\right\}\)
\(\Rightarrow n\in\left\{0;1\right\}\)
* Để A có giá trị nguyên thì 3n + 9 chia hết cho n - 4
Có 3n + 9 = 3. ( n - 4 ) + 21 chia hết cho n - 4
Mà 3. ( n - 4 ) chia hết cho n - 4
3 . ( n - 4 ) + 21 chia hết cho n - 4 <=> 21 chia hết cho n - 4
=> n - 4 thuộc U ( 21 ) = { 1 ; 3 ; 7 ; 21 }
n - 4 = 1 => n = 5
n - 4 = 3 => n = 7
n - 4 = 7 => n = 11
n - 4 = 21 => n = 25
Vậy n = { 5 ; 7 ; 11 ; 25 }
Để \(\frac{3n+9}{n-4}\)thì tử phải chia hết cho mẫu hay mẫu phải thuộc ước của từ.Ta tìm điều kiện thích hợp :
\(3n+9⋮n-4\Leftrightarrow3n-12+21⋮n-4\)
\(\Rightarrow3\left(n-4\right)+21⋮n-4\)
\(3\left(n-4\right)⋮n-4\Rightarrow21⋮n-4\)
\(\Leftrightarrow n-4\inƯ\left(21\right)=\left\{1,3,7,21,-1,-3,-7,-21\right\}\)
Rồi bạn lập bảng rồi tính giá trị ra
Tương tự câu b
\(6n+5=6n-1+6⋮6n-1\)
\(6n-1⋮6n-1\Rightarrow6⋮6n-1\)
a ) Để 3n + 9 / n -4 là số nguyên thì 3n + 9 chia hết cho n - 4
hay 3n - 4 + 13 chia hết cho n - 4
nên 13 chia hết cho n - 4 ( vì 3n - 4 chia hết cho n - 4 )
do đó n - 4 thuộc Ư( 13) = { -13;-1;1;13}
hay n thuộc { -9;3;5;17}
Vậy n thuộc { -9;3;5;17}
b) Để 6n + 5 / 6n - 1 là số nguyên thì 6n + 5 chia hết cho 6n - 1
hay 6n -1 + 6 chia hết cho 6n - 1
nên 6 chia hết cho 6n - 1 ( 6n - 1 chia hết cho 6n - 1)
do đó 6n - 1 thuộc Ư(6) = { -6;-3;-2;-1;1;2;3;6}
xét các trường hợp được n = 0
Vậy n = 0
a) A=3n+9/n-4
\(A=\frac{3\left(n-4\right)+21}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\in Z\)
=>21 chia hết n-4
=>n-4 thuộc Ư(21)={..}bạn tự lo tiếp
b)B=6n+5/2n-1
\(B=\frac{6n+5}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=\frac{3\left(2n-1\right)}{2n-1}+\frac{8}{2n-1}=3+\frac{8}{2n-1}\in Z\)
=>8 chia hết 2n-1
=>2n-1 thuộc Ư(8)={...}tự lo
\(a,3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
3n-1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
n | loại | 0 | 1 | loại | loại | loại | loại | -1 | loại | loại | loại | loại |
c, \(\dfrac{2\left(n-3\right)+9}{n-3}=2+\dfrac{9}{n-3}\Rightarrow n-3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
n-3 | 1 | -1 | 3 | -3 | 9 | -9 |
n | 4 | 2 | 6 | 0 | 12 | -6 |
Để phân số trên thỏa mãn điều kiện thì:
3n+4 chia hết cho n-1
3n+4=3n-3+7
=3.(n-1)+7
Vì 3.(n-1) chia hết cho n-1 nên 7 phải chia hết cho n-1
n-1 thuộc +-1;+-7
Thử các trường hợp ra,ta có:
n thuộc:0;2;8;-6.
Đặt A=3n+9/n-4
ta có để A thuộc Z ta có
3n+9=3(n-4)+17
ta có 3(n-4) chia hết cho n-4
suy ra 17 chia hết cho n-4
n-4 thuộc ước của 17
Ư(17)={1;-1;17;-17}
th1 n-4=1 suy ra n=5
th2 n-4=-1 suy ra n=3
th3 n-4=17 suy ra n=21
th4 n-4=-17 suy ra n=-13
Vậy n={5;3;21;-13}
B, Đặt B=5/n+1
Để B nhận giá trị nguyên thì 5 phải chia hết cho n+1
n+1 thuộc ước của 5
Ư(5)={1;-1;-5;5}
th1 n+1=1 suy ra n=0
th2 n+1=-1 suy ra n=-2
th3 n+1=-5 suy ra n=-6
th4 n+1=5 suy ra n=4
c, Đặt C=6n+5/2n-1
Để C nhận giá trị nguyên thì 6n+5 phải chia hết cho 2n-1
6n+5=6(n-1)+11
ta có 6(n-1) chia hết cho 2n-1
suy ra 11 chia hết cho 2n-1
2n-1 thuộc ước của 11
Ư(11)={1;-1;-11;11}
th1 2n-1=11 suy ra n=6
th2 2n-1=-11 suy ra n=-5
th3 2n-1=1 suy ra n=1
th4 2n-1=-1 suy ra n=0
n={6;5;1;0}
đúng nhưng vít hơn dài dòng