Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{n-4}{n+2}=\frac{n+2}{n+2}-\frac{6}{n+2}=1-\frac{6}{n+2}\). Để \(\frac{n-4}{n+2}\)là số nguyên âm \(\Leftrightarrow n+2\inƯ^-\left(6\right)\)
\(\Leftrightarrow n+2\in\left\{-6;-3;-2;-1\right\}\Leftrightarrow n\in\left\{-8;-5;-4;-3\right\}\)
Ư- là ước nguyên âm nha !
Mấy phần b) c) tương tự, mình chỉ làm mẫu phần a) , còn 2 phần còn lại coi như là luyện tập cho bạn đi !
b) Để \(\frac{n+4}{n+1}\in Z\)
\(\Rightarrow n+4⋮n+1\)
\(\Rightarrow n+1+3⋮n+1\)
Mà \(n+1⋮n+1\)
\(\Rightarrow3⋮n+1\)
Lại có : \(n\in Z\Rightarrow n+1\in Z\)
\(\Rightarrow n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{0;-2;2;-4\right\}^{\left(1\right)}\)
Để \(\frac{2}{n-1}\in Z\)
\(\Rightarrow2⋮n-1\)
Lại có: \(n\in Z\Rightarrow n-1\in Z\)
\(\Rightarrow n-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\Rightarrow n\in\left\{2;0;3;-1\right\}^{\left(2\right)}\)
Từ (1) và (2) suy ra:
Để \(\frac{n+4}{n+1}\)và \(\frac{2}{n-1}\)đồng thời có giá trị nguyên thì n = 0 ; 2 ( thỏa mãn n là số nguyên )
a) Để \(\frac{n+2}{9}\in Z\)
\(\Rightarrow n+2⋮9\)
\(\Rightarrow n+2⋮3^{\left(1\right)}\)
Để \(\frac{n+3}{6}\in Z\)
\(\Rightarrow n+3⋮6\)
\(\Rightarrow n+3⋮3\)
\(\Rightarrow n⋮3^{\left(2\right)}\)
Từ (1) và (2) suy ra :
Ko tồn tại giá trị nào của n thỏa mãn đề bài
\(P\in Z\Rightarrow-n+2⋮n-1\)
\(\Rightarrow-n+1+1⋮n-1\)
\(\Rightarrow-\left(n-1\right)+1⋮n-1\)
\(\Rightarrow1⋮n-1\)
\(\Rightarrow n-1\in\left\{1;-1\right\}\)
\(\Rightarrow n\in\left\{2;0\right\}\)
ta có \(A=\frac{-24}{n}+\frac{17}{n}=\frac{\left(-24\right)+17}{n}=\frac{-7}{n}\)
\(\Rightarrow n\inƯ\left(-7\right)=\left\{-7,-1,1,7\right\}\)
\(\Rightarrow n=-7;n=-1;n=1;n=7\) để A là số nguyên
\(B=\frac{n-8}{n+1}+\frac{n+3}{n+1}=\frac{n-8+n+3}{n+1}=\frac{2n-5}{n+1}=\frac{2n+2-6}{n+1}=2-\frac{7}{n+1}\)
\(\Rightarrow n+1\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
nếu \(n+1=-7\Rightarrow n=-8\)
\(n+1=-1\Rightarrow n=-2\)
\(n+1=1\Rightarrow n=0\)
\(n+1=7\Rightarrow n=6\)
vậy \(n\in\left\{-8;-2;0;6\right\}\)để B là số nguyên
a) Ta có : xy - x - y = 2
=> xy - x = 2 + y
=> x(y - 1) = y + 2
=> x = \(\frac{y+2}{y-1}\)
Mà x là số nguyên nên : \(\frac{y+2}{y-1}\)cũng là số nguyên
Suy ra : y + 2 chia hết cho y - 1
=> y - 1 + 3 chia hết cho y - 1
=> 3 chia hết cho y - 1
=> y - 1 thuộc Ư(3) = {-3;-1;1;3}
Ta có bảng :
y - 1 | -3 | -1 | 1 | 3 |
y | -2 | 0 | 2 | 4 |
x = \(\frac{y+2}{y-1}\) | 0 | -2 | 4 | 2 |
Ta có:
\(P=\frac{2-n}{n-1}=\frac{-n+2}{n-1}=\frac{-\left(n-1\right)+1}{n-1}=-1+\frac{1}{n-1}.\)
Để P là số nguyên thì \(n-1\inƯ\left(1\right)=\left\{1,-1\right\}\)
n - 1 = 1 => n = 2
n - 1 = -1 => n = 0
Vậy \(n\in\left\{2;0\right\}\)Thì P là số nguyên