\(\frac{n+2}{9}\)và 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2018

\(\frac{n+2}{9}\in Z\Leftrightarrow n+2⋮9\Rightarrow n=9k-2\left(k\in Z\right)...\)
\(\frac{n+3}{6}\in Z\Leftrightarrow n+3⋮6\Rightarrow n=6m-3\left(m\in Z\right)\)
Để t/m ycbt \(\Rightarrow9k-2=6m-3\Rightarrow9k+1=6m\Rightarrow m=\frac{9k+1}{6}\)..
 

14 tháng 1 2018

Để \(\frac{n+2}{9}\in Z\)

\(\Rightarrow n+2⋮9\)

\(\Rightarrow n+2⋮3^{\left(1\right)}\)

Để \(\frac{n+3}{6}\in Z\)

\(\Rightarrow n+3⋮6\)

\(\Rightarrow n+3⋮3\)

\(\Rightarrow n⋮3^{\left(2\right)}\)

Từ (1) và (2) suy ra:

Ko tồn tại giá trị của n thỏa mãn đề bài

5 tháng 12 2016

Câu 3: 824

11 tháng 12 2016

Câu 1:13

Câu 2:36

Câu 3:824

đây là toán 6 ó, thấy nó hơi khó nên cho các anh chj bật cao hơn giải

27 tháng 1 2016

Em mới học lớp 5 thui

24 tháng 3 2020

chứng minh rằng với mọi n ta có n^5/5 +n^3/3+7n/15 thuộc Z

28 tháng 3 2018

4.Nếu\(|x-1|=0\)

thì x = 1.=> lx+2l = 3 và lx+3l = 4.

=>lx-1l+lx+2l+lx+3l=0+3+4=7.

Nếu \(|x+2|=0\)

thì x=-2 =>lx-1l=3 và lx+3l=1.

=>lx-1l+lx+2l+lx+3l=0+3+1=4.

Nếu \(|x+3|=0\)

thì x=-3 =>lx-1l=4 và lx+2l=1.

=>lx-1l+lx+2l+lx+3l=5.

Vậy \(Min_{\text{lx-1l+lx+2l+lx+3l}}=4\).

20 tháng 7 2019

\(n^3+100=n^2.\left(n+10\right)-10n^2+100\)

\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100n+100\)

\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100.\left(n+10\right)-900\)

\(=\left(n+10\right).\left(n^2-10n+100\right)-900\)

Để n3+100 chia hết cho n+10 => -900 chia hết cho n+10 => n+10 thuộc Ư(900)

Vì n lớn nhất => n+10 lớn nhất => n+10=900 => n=890

Vậy n=890

20 tháng 7 2019

Xét a là một số tự nhiên bất kỳ. Dễ thấy, nếu a chia hết cho 3 => a3 chia hết cho 9 (1)

Xét: \(a\equiv1\left(mod9\right)\Rightarrow a^3\equiv1\left(mod9\right)\)(2)

\(a\equiv2\left(mod9\right)\Rightarrow a^3\equiv8\left(mod9\right)\)(3)

\(a\equiv4\left(mod9\right)\Rightarrow a^3\equiv64\equiv1\left(mod9\right)\)(4)

\(a\equiv5\left(mod9\right)\Rightarrow a^3\equiv125\equiv8\left(mod9\right)\)(5)

\(a\equiv7\left(mod9\right)\Rightarrow a^3\equiv343\equiv1\left(mod9\right)\)(6)

\(a\equiv8\left(mod9\right)\Rightarrow a^3\equiv512\equiv8\left(mod9\right)\)(7)

Từ (1),(2),(3),(4),(5),(6),(7) => lập phương của 1 số nguyên bất kỳ khi chia cho 9 có số dư là 0,1,8

Dễ thấy: để a3+b3+c3 chia hết cho 9 => 1 trong 3 số a,b,c hoặc cả 3 số a,b,c phải chia hết cho 3 => 

=> abc chia hết cho 3. Vậy a3+b3+c3 chia hết cho 9 thì abc chia hết cho 3