\(D=\frac{12-n}{2n-1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2019

Để biểu thức trên có giá trị là số nguyên 

\(\Leftrightarrow n^2-2n-2⋮n-3\)

\(\Leftrightarrow n^2-3n+n-2⋮n-3\)

\(\Leftrightarrow n.\left(n-3\right)+n-2⋮n-3\)

mà \(n.\left(n-3\right)⋮n-3\)

\(\Rightarrow n-2⋮n-3\)

\(\Rightarrow n-3+1⋮n-3\)

Mà \(n-3⋮n-3\)

\(\Rightarrow1⋮n-3\)

\(\Rightarrow n-3\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\Rightarrow n\in\left\{4;2\right\}\)

Vậy...

26 tháng 5 2019

                                                          \(\text{Bài giải}\)

\(\frac{n^2-2n-2}{n-3}=\frac{n\left(n-3\right)+3n-2n-2}{n-3}=\frac{n\left(n-3\right)+n-2}{n-3}=\frac{n\left(n-3\right)+\left(n-3\right)+1}{n-3}\)

\(=\frac{\left(n+1\right)\left(n-3\right)}{n-3}+\frac{1}{n-3}=n+1+\frac{1}{n-3}\)

                \(\text{Biểu thức trên nguyên khi }\frac{1}{n-3}\text{ nguyên }\Rightarrow\text{ }1\text{ }⋮\text{ }n-3\)

                                                                                           \(\Leftrightarrow\text{ }n-3\inƯ\left(1\right)=\left\{\pm1\right\}\)

          \(\Rightarrow\orbr{\begin{cases}n-3=-1\\n-3=1\end{cases}}\)                          \(\Rightarrow\text{ }\orbr{\begin{cases}n=-1+3\\n=1+3\end{cases}}\)                        \(\Rightarrow\orbr{\begin{cases}n=2\\n=4\end{cases}}\)

                                  \(\Rightarrow\text{ }n\in\left\{2\text{ ; }4\right\}\)

30 tháng 7 2018

A=\(\frac{2n+5}{n-3}\)=\(\frac{n-3+n+8}{n-3}\)=\(1+\frac{n+8}{n-3}\)=\(1+\frac{n-3+11}{n-3}\)=\(2+\frac{11}{n-3}\) Đk \(n\ne3\)

\(2\in Z\)nên \(\frac{11}{n-3}\in Z\)\(\Rightarrow n-3\inƯ\left(11\right)=\left(1;-1;11;-11\right)\)

+)\(n-3=1\Leftrightarrow n=4\)(TM đk)

+)\(n-3=-1\Leftrightarrow n=2\)(TM đk)

+)\(n-3=11\Leftrightarrow n=14\)(TMđk)

+)\(n-3=-11\Leftrightarrow n=-8\)(TM đk)

Vậy x={4;2;14;-8} thì A\(\in\)Z

30 tháng 7 2018

ĐK: \(n\ne3\)

\(A=\frac{2n-5}{n-3}=\frac{2n-3-2}{n-3}=\frac{2n-3}{n-3}-\frac{2}{n-3}\)\(=2-\frac{2}{n-3}\)

Để \(A\inℤ\Leftrightarrow2-\frac{2}{n-3}\inℤ\Leftrightarrow\frac{2}{n-3}\inℤ\)\(\Leftrightarrow n-3\inƯ\left(2\right)\Leftrightarrow n-3\in\left\{\pm1;\pm3\right\}\)\(\Leftrightarrow n\in\left\{4;2;6;0\right\}\)

15 tháng 2 2018

Để A nhân giá trị số nguyên thì

\(\Leftrightarrow6⋮2n-1\)

Vì n\(\in Z\Rightarrow2n-1\in Z\)

\(\Rightarrow2n-1\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

Vì 2n-1 là số lẻ

\(\Rightarrow2n-1\in\left\{\pm1;\pm3\right\}\)

Ta có bảng giá trị

2n-1-11-33
2n02-24
n01-12

Đối chiếu điều kiện n\(\in Z\)

Vậy n={0;1;-1;2}

14 tháng 3 2016

\(y=\frac{1}{x^2+\sqrt{x}}\)

28 tháng 7 2018

mày vào vở chiều ý có hết

6 tháng 6 2020

a) *) \(\frac{n-1}{3-2n}\)

Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))

\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)

=> ƯCLN (n-1;3-2n)=1

=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên

*) \(\frac{3n+7}{5n+12}\)

Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)

\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)

\(\Rightarrow d=1\)

=> ƯCLN (3n+7;5n+12)=1

=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên

6 tháng 6 2020

b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)

\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)

Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên

2 nguyên => \(\frac{7}{n-1}\)nguyên

=> 7 chia hết cho n-1

n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng

n-1-7-117
n-6028

vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên

11 tháng 7 2019

Ta có: A = \(\frac{5n-7}{n-3}=\frac{5\left(n-3\right)+8}{n-3}=5+\frac{8}{n-3}\)

Để A \(\in\)Z <=> 8 \(⋮\)n - 3 <=> n - 3 \(\in\)Ư(8) = {1; -1; 2; -2; 4; -4; 8; -8}

Lập bảng : 

n - 3 1 -1 2 -2 4 -4 8 -8
  n 4 2 5 1 7 -1 11 -5

Vậy ...

B = \(\frac{12n-5}{2n-1}=\frac{6\left(2n-1\right)+1}{2n-1}=6+\frac{1}{2n-1}\)

Để B \(\in\)Z <=> 1 \(⋮\)2n - 1 <=> 2n - 1 \(\in\)Ư(1) = {1; -1}

+) 2n - 1 = 1 => 2n = 1 + 1 = 2 => n = 2 : 2 = 1

  2n - 1 = -1 => 2n = -1 + 1 = 0 => n = 0 : 2 = 0

Vậy ...

11 tháng 7 2019

\(A=\frac{5n-7}{n-3}\)Điều kiện : \(n\ne3\)

\(A=\frac{5n-7}{n-3}=\frac{5\left(n-3\right)+8}{n-3}=5+\frac{8}{n-3}\)

Để \(A\in Z\Rightarrow\frac{8}{n-3}\in Z\Rightarrow n-3\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

\(\Rightarrow n\in\left\{-5;-1;1;2;4;5;7;11\right\}\)

Vậy \(\Rightarrow n\in\left\{-5;-1;1;2;4;5;7;11\right\}\)thì \(A\in Z\)

\(B=\frac{12n-5}{2n-1}\) Điều kiện : \(n\ne\frac{1}{2}\)

\(=\frac{6\left(2n-1\right)+1}{2n-1}=6+\frac{1}{2n-1}\)

Để \(B\in Z\Rightarrow\frac{1}{2n-1}\in Z\Rightarrow2n-1\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\Rightarrow n\in\left\{0;1\right\}\)

Vậy \(\Rightarrow n\in\left\{0;1\right\}\)thì \(B\in Z\)

18 tháng 2 2017

câu a là vô tận

b)Vì \(\frac{3n+4}{n-2}\in Z\Rightarrow3n+4⋮n-2\Rightarrow3n-6+10⋮n-2\)

\(\Rightarrow10⋮n+2\Rightarrow n+2\inƯ\left(10\right)\)

đến đó bạn tự làm nhé