Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đây là toán 6 ó, thấy nó hơi khó nên cho các anh chj bật cao hơn giải
\(\frac{2n^2+n-7}{n-2}=\frac{2n^2-4n+5n-10+3}{n-3}\)
\(=\frac{2n\left(n-2\right)+5\left(n-2\right)+3}{n-2}\)
\(=\frac{\left(2n+5\right)\left(n-2\right)+3}{n-2}\)
Để \(\frac{2n^2+n-7}{n-2}\)là số nguyên thì \(\left(2n+5\right)\left(n-2\right)+3⋮n-2\)
Mà \(\left(2n+5\right)\left(n-2\right)⋮n-2\Rightarrow3⋮n-2\)
\(\Rightarrow n-2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow n\in\left\{-1;1;3;5\right\}\)
Vậy \(n\in\left\{-1;1;3;5\right\}.\)
\(A=\frac{2n^2+n-7}{n-2}=\frac{\left(n-2\right)\left(2n+5\right)+3}{n-2}=2n+5+\frac{3}{n-2}\)
Để A nguyên thì \(\left(n-2\right)\inƯ\left(3\right)\)
Ta có bảng:
n-2 | -3 | -1 | 1 | 3 |
n | -1 | 1 | 3 | 5 |
Vậy n={-1;1;3;5}
\(n^3+100=n^2.\left(n+10\right)-10n^2+100\)
\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100n+100\)
\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100.\left(n+10\right)-900\)
\(=\left(n+10\right).\left(n^2-10n+100\right)-900\)
Để n3+100 chia hết cho n+10 => -900 chia hết cho n+10 => n+10 thuộc Ư(900)
Vì n lớn nhất => n+10 lớn nhất => n+10=900 => n=890
Vậy n=890
Xét a là một số tự nhiên bất kỳ. Dễ thấy, nếu a chia hết cho 3 => a3 chia hết cho 9 (1)
Xét: \(a\equiv1\left(mod9\right)\Rightarrow a^3\equiv1\left(mod9\right)\)(2)
\(a\equiv2\left(mod9\right)\Rightarrow a^3\equiv8\left(mod9\right)\)(3)
\(a\equiv4\left(mod9\right)\Rightarrow a^3\equiv64\equiv1\left(mod9\right)\)(4)
\(a\equiv5\left(mod9\right)\Rightarrow a^3\equiv125\equiv8\left(mod9\right)\)(5)
\(a\equiv7\left(mod9\right)\Rightarrow a^3\equiv343\equiv1\left(mod9\right)\)(6)
\(a\equiv8\left(mod9\right)\Rightarrow a^3\equiv512\equiv8\left(mod9\right)\)(7)
Từ (1),(2),(3),(4),(5),(6),(7) => lập phương của 1 số nguyên bất kỳ khi chia cho 9 có số dư là 0,1,8
Dễ thấy: để a3+b3+c3 chia hết cho 9 => 1 trong 3 số a,b,c hoặc cả 3 số a,b,c phải chia hết cho 3 =>
=> abc chia hết cho 3. Vậy a3+b3+c3 chia hết cho 9 thì abc chia hết cho 3
Từ gt=> \(4n+20⋮5n+14\Leftrightarrow20n+100⋮5n+14\)
\(\Leftrightarrow15n+86-3\left(5n+14\right)⋮5n+14\)
\(\Leftrightarrow128⋮5n+14\)
lập bảng là ra
\(\frac{n+2}{9}\in Z\Leftrightarrow n+2⋮9\Rightarrow n=9k-2\left(k\in Z\right)...\)
\(\frac{n+3}{6}\in Z\Leftrightarrow n+3⋮6\Rightarrow n=6m-3\left(m\in Z\right)\)
Để t/m ycbt \(\Rightarrow9k-2=6m-3\Rightarrow9k+1=6m\Rightarrow m=\frac{9k+1}{6}\)..
Để \(\frac{n+2}{9}\in Z\)
\(\Rightarrow n+2⋮9\)
\(\Rightarrow n+2⋮3^{\left(1\right)}\)
Để \(\frac{n+3}{6}\in Z\)
\(\Rightarrow n+3⋮6\)
\(\Rightarrow n+3⋮3\)
\(\Rightarrow n⋮3^{\left(2\right)}\)
Từ (1) và (2) suy ra:
Ko tồn tại giá trị của n thỏa mãn đề bài
\(A=\frac{n^4-3n^3-n^2+3n+7}{n-3}=\frac{n^3\left(n-3\right)-\left(n^2-3n\right)+7}{n-3}=\frac{n^3\left(n-3\right)-n\left(n-3\right)+7}{n-3}\)
\(=\frac{\left(n-3\right)\left(n^3-n\right)+7}{n-3}=\frac{\left(n-3\right)\left(n^3-n\right)}{n-3}+\frac{7}{n-3}=n^3-n+\frac{7}{n-3}\)
Theo đề bài n là số nguyên => \(n^3-n\) là số nguyên
Để \(n^3-n+\frac{7}{n-3}\) có giá trị là 1 số nguyên <=> \(\frac{7}{n-3}\) có giá trị là 1 số nguyên
=> n - 3 là ước của 7 => Ư(7) = { - 7; - 1; 1; 7 }
Ta có bảng sau :
n - 3 | - 7 | - 1 | 1 | 7 |
n | - 4 | 2 | 4 | 10 |
Mà x là số nguyên lớn nhất => x = 10
Vậy x = 10
<=> A = \(\frac{\left(4n+8\right)-1}{n+2}\)(n khác 2)
<=> A = \(\frac{4\left(n+2\right)-1}{n+2}\)
<=> A = 4 - \(\frac{1}{n+2}\)
vì 4 thuộc Z . để A thuộc Z
=> \(\frac{1}{n-2}\)thuộc Z
=>n-2 là ước của 1
mà n thuộc Z => n - 2 thuộc Z, n khác 2
=> n - 2 là ước nguyên của 1
ta có bảng
n-2 -1 1
n 1(thỏa mãn) 3(thỏa mãn)
kl n thuộc tập hợp 1, 3