\(x^4+y^4+z^4\)là số chính pương

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2019

3.(x+y)^2+y^2+3y+9/4=25/4

(x+y)^2+(y+3/2)^2=25/4

6 tháng 10 2019

2

Do \(\overline{a56b}⋮45\)nên \(\overline{a56b}\) chia hết cho 5;9 vì \(\left(5,9\right)=1\)

\(TH1:b=5\Rightarrow\overline{a56b}=\overline{a565}\) chia hết cho 9

\(\Rightarrow a+5+6+5⋮9\Rightarrow a+16⋮9\)

Mà \(a\in\left\{1;2;3;4;5;6;7;8;9;0\right\}\)

\(\Rightarrow a=2\)

\(TH2:b=0\Rightarrow\overline{a56b}=\overline{a560}⋮9\)

\(\Rightarrow a+5+6+0⋮9\Rightarrow11⋮9\)

Lập luận tương tự ta có \(a=7\Rightarrow\overline{a56b}=7560\)

19 tháng 1 2020

Ta có : \(P=x^3+x^2y+y^3+y^2z+z^3+z^2x\)

\(=x^3+y^3+z^3+x^2y+y^2z+z^2x\)

Áp dụng BĐT Cô-si cho 3 số, ta có : \(x^2y=x.x.y\le\frac{x^3+y^3+z^3}{3}\)

tương tự : \(y^2z\le\frac{y^3+y^3+z^3}{3}\)\(z^2x\le\frac{z^3+z^3+x^3}{3}\)

\(\Rightarrow x^2y+y^2z+z^2x\le\frac{3\left(x^3+y^3+z^3\right)}{3}=x^3+y^3+z^3\)

\(\Rightarrow P\le2\left(x^3+y^3+z^3\right)\)

Áp dụng BĐT Cô-si cho 4 số, ta có : \(x^4+x^4+x^4+1\ge4\sqrt[4]{\left(x^4\right)^3.1}=4x^3\)

\(\Rightarrow3x^4+1\ge4x^3\)

Tương tự : \(3y^4+1\ge4y^3;3z^4+1\ge4z^3\)

Cộng lại theo vế, ta được : \(3\left(x^4+y^4+z^4\right)+3\ge4\left(x^3+y^3+z^3\right)\)

\(\Rightarrow2P\le4\left(x^3+y^3+z^3\right)\le3\left(x^4+y^4+z^4\right)+3=12\)

\(\Rightarrow P\le6\)

Vậy GTLN của P là 6 khi x = y = z = 1

20 tháng 1 2020

Giả sử \(y=min\left\{x,y,z\right\}\)

\(\le\frac{3}{2}\left(x^4+y^4+z^4+1\right)=6\)

Đẳng thức xảy ra khi \(x=y=z=1\)

7 tháng 7 2017

thiếu đề!!

20 tháng 9 2018

Xửa đề:

\(\frac{x-y\sqrt{2015}}{y-z\sqrt{2015}}=\frac{m}{n}\) (vơi m, n thuộc Z)

\(\Leftrightarrow xn-ym=\left(yn-zm\right)\sqrt{2015}\)

\(\Leftrightarrow\hept{\begin{cases}xn-ym=0\\yn-zm=0\end{cases}}\)

\(\Rightarrow\frac{x}{y}=\frac{m}{n}=\frac{y}{z}\)

\(\Rightarrow xz=y^2\)

\(\Rightarrow x^2+y^2+z^2=x^2+2xz+z^2-y^2=\left(x+z+y\right)\left(x+z-y\right)\)

\(\Rightarrow\orbr{\begin{cases}x+y+z=1\left(l\right)\\x+z-y=1\end{cases}}\)

\(\Rightarrow x+z=y+1\)

\(\Leftrightarrow x^2+2xz+z^2=y^2+2y+1\)

\(\Leftrightarrow x^2+\left(y-1\right)^2+z^2=2\)

\(\Rightarrow x=y=z=1\)

20 tháng 9 2018

Đề ghi nhầm rồi. Xao không co z vậy

27 tháng 6 2018

Ta có \(4x+4y+4z+4\sqrt{xyz}=16\Rightarrow4x+4\sqrt{xyz}+yz=yz-4y-4z+16\)

=> \(\left(2\sqrt{x}+\sqrt{yz}\right)^2=\left(4-y\right)\left(4-z\right)\Rightarrow\sqrt{\left(4-y\right)\left(4-z\right)}=2\sqrt{x}+\sqrt{yz}\)

=> \(\sqrt{x}\sqrt{\left(4-y\right)\left(4-z\right)}=\sqrt{x}\left(2\sqrt{x}+\sqrt{yz}\right)=2x+\sqrt{xyz}\)

Tương tự, rồi cộng lại, ta có 

\(S=2\left(x+y+z\right)+3\sqrt{xyz}-\sqrt{xyz}=2\left(x+y+z+\sqrt{xyz}\right)=8\)

Vậy S=8 

^_^

3 tháng 8 2017

ĐẶt \(\left(x,y,z\right)\rightarrow\left(a,b,c\right)\) ( cho dễ nhìn thôi ko có ý j cả :) )

Áp dụng BĐT AM-GM ta có: 

\(a^4+bc\ge2\sqrt{a^4bc}=2a^2\sqrt{bc}\Rightarrow\frac{a^2}{a^4+bc}\le\frac{a^2}{2a^2\sqrt{bc}}=\frac{1}{2\sqrt{bc}}\)

Tương tự cho 2 BĐT còn lại rồi cộng lại :

\(P\le\frac{1}{2\sqrt{ab}}+\frac{1}{2\sqrt{bc}}+\frac{1}{2\sqrt{ac}}\). Lại theo AM-GM có

\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)  khi đó

\(P\le\frac{1}{2\sqrt{ab}}+\frac{1}{2\sqrt{bc}}+\frac{1}{2\sqrt{ca}}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=\frac{1}{2}\cdot\frac{ab+bc+ca}{abc}\le\frac{1}{2}\cdot\frac{a^2+b^2+c^2}{abc}=\frac{1}{2}\cdot3=\frac{3}{2}\)

Xảy ra khi \(a=b=c=1\)