K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
13 tháng 10 2021

Ta có: \(2000=2^4.5^3\).

Suy ra \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮125\)

mà \(n,n+1,n+2,n+3\)là bốn số tự nhiên liên tiếp nên có tối đa một số trong bốn số đó chia hết cho \(5\), khi đó số đó cũng phải chia hết cho \(125\)

Với \(n+3=125\Leftrightarrow n=122\)thử trực tiếp không thỏa.

Với \(n+2=125\Leftrightarrow n=123\)thử trực tiếp không thỏa.

Với \(n+1=125\Leftrightarrow n=124\)thử trực tiếp không thỏa.

Với \(n=125\)thử lại thỏa mãn. 

Vậy \(n=125\)là giá trị cần tìm. 

13 tháng 10 2021

em cảm ơn ạ

DD
26 tháng 11 2020

\(P=n^3+4n^2-20n-48=\left(n+2\right)\left(n-4\right)\left(n+6\right)\)

Với \(n=4\Rightarrow P=0⋮125\)(thỏa)

Với \(n< 4\)thử từng giá trị đều không thỏa. 

Vậy số \(n\)nhỏ nhất cần tìm là \(4\).

26 tháng 11 2020

    \(n^3+4n^2-20n-48\)

\(=n^3-4n^2+8n^2-32n+12n-48\)

\(=\left(n^3-4n^2\right)+\left(8n^2-32n\right)+\left(12n-48\right)\)

\(=n^2\left(n-4\right)+8n\left(n-4\right)+12\left(n-4\right)\)

\(=\left(n-4\right)\left(n^2+8n+12\right)\)

Nhận thấy n = 4 thì biểu thức trên bằng 0, chia hết cho 125.

Vậy số tự nhiên n nhỏ nhất là bằng 4 (thử với n = 1, 2, 3 đều không chia hết cho 125)

1 tháng 9 2017

để n^2 +2002 là số chính phương 
=> n^2 +2002 =a^2 ( với a là số tự nhiên #0) 
=> a^2 -n^2 =2002 
=> (a-n)(a+n) =2002 
do 2002 chia hết cho 2=> a-n hoặc a+n phải chia hết cho 2 
mà a-n -(a+n) =-2n chia hết cho 2 
=> a-n và a+n cung tính chẵn lẻ => a-n ,a+n đều chia hết cho 2 
=>(a-n)(a+n) chia hết cho 4 mà 2002 không chia hết cho 4 
=> vô lý 

1 tháng 9 2017

Ai giải được thì nhớ giải rõ ràng nhé! Xin cam ơn người giải được.

29 tháng 6 2023

Để tìm tất cả các số nguyên dương k thỏa mãn điều kiện đã cho, ta sẽ giải phương trình theo n.

2n + 11 chia hết cho 2k - 1 có nghĩa là tồn tại một số nguyên dương m sao cho:
2n + 11 = (2k - 1)m

Chuyển biểu thức trên về dạng phương trình tuyến tính:
2n - (2k - 1)m = -11

Ta nhận thấy rằng nếu ta chọn một số nguyên dương nào đó, ta có thể tìm được một số nguyên dương k tương ứng để phương trình trên có nghiệm. Do đó, ta chỉ cần tìm tất cả các số nguyên dương n thỏa mãn phương trình trên.

Để giải phương trình này, ta có thể sử dụng thuật toán Euclid mở rộng (Extended Euclidean Algorithm). Tuy nhiên, trong trường hợp này, ta có thể tìm được một số giá trị n và k thỏa mãn phương trình bằng cách thử từng giá trị của n và tính giá trị tương ứng của k.

Dưới đây là một số cặp giá trị n và k thỏa mãn phương trình đã cho:
(n, k) = (3, 2), (7, 3), (11, 4), (15, 5), (19, 6), …

Từ đó, ta có thể thấy rằng có vô số giá trị n và k thỏa mãn phương trình đã cho.

  
29 tháng 6 2023

nhưng mà đề bài là 2n+11 chia hết cho 2k-1 chứ không phải 2n+11 chia hết cho 2k-1.