\(\frac{4.1}{4.1^4+1}+\frac{4.2}{4.2^4+1}+\frac{4.3}{4.3^4...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2018

Ta có: \(4n^4+1=\left(4n^4+4n^2+1\right)-4n^2=\left(2n^2+2n+1\right)\left(2n^2-2n+1\right)\)

\(\frac{4n}{4n^4+1}=\frac{\left(2n^2+2n+1\right)-\left(2n^2-2n+1\right)}{\left(2n^2-2n+1\right)\left(2n^2+2n+1\right)}=\frac{1}{2n^2-2n+1}-\frac{1}{2n^2+2n+1}\)

Thay vào ta có: 

\(\frac{4.1}{4.1^4+1}+\frac{4.2}{4.2^2+1}+...+\frac{4n}{4n^4+1}=\frac{220}{221}\)

\(\Leftrightarrow1-\frac{1}{5}+\frac{1}{5}-\frac{1}{13}+...+\frac{1}{2n^2-2n+1}-\frac{1}{2n^2+2n+1}=\frac{220}{221}\)

\(\Leftrightarrow1-\frac{1}{2n^2+2n+1}=\frac{220}{221}\)

\(\Leftrightarrow\frac{2n^2+2n}{2n^2+2n+1}=\frac{220}{221}\Rightarrow n=10\)

13 tháng 8 2018

Bạn nào biết chỉ mk với. Mk sẽ đãi hậu hĩnh luôn.

13 tháng 8 2018

\(a,\frac{3^7.5^4}{25^2}=\frac{3^7.5^4}{\left(5^2\right)^2}=\frac{3^7.5^4}{5^4}=3^7\)

7 tháng 9 2019

1. 

Ta có: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{pq}\)

<=> \(pq\left(x+y\right)=xy\)

Đặt: \(x=ta;y=tb\) với (a; b)=1

Ta có: \(pq.\left(a+b\right)=tab\)

<=> \(pq=\frac{t}{a+b}.ab\left(1\right)\)

 vì (a; b) =1 => a, b, a+b đôi một nguyên tố cùng nhau. (2)

(1); (2) => \(t⋮a+b\)

=> \(pq⋮ab\Rightarrow pq⋮a\)vì p; q là hai số nguyên tố nên \(a\in\left\{1;p;q;pq\right\}\)

 TH1: a=1 => \(pq⋮b\Rightarrow b\in\left\{1;p;q;pq\right\}\)

+) Khả năng 1: b=1 

(1) => \(t=2pq\)=> \(x=y=2pq\)( thỏa mãn)

+) Khả năng 2:  b=p

(1) => \(pq=\frac{t}{1+p}.p\Leftrightarrow t=\left(1+p\right)q=q+pq\)

=> \(x=at=q+pq;\)

\(y=at=pq+p^2q\)(tm)

+) Khả năng 3: b=q 

tương tự như trên

(1) => \(t=p\left(1+q\right)=p+pq\)

=> \(x=at=p+pq\)

\(y=bt=q\left(p+pq\right)=pq+pq^2\)

+) Khả năng 4: \(b=pq\)

(1) =>\(t=1+pq\)

=> \(x=1+pq;y=pq\left(1+pq\right)=1+p^2q^2\) 

 TH2\(a=p\)

=> \(q⋮b\Rightarrow\orbr{\begin{cases}b=1\\b=q\end{cases}}\)

+) KN1: \(b=1\)

Em làm tiếp nhé! Khá là dài

7 tháng 9 2019

2. \(x^4+4=p.y^4\)

+) Với x chẵn 

Đặt x=2m ( m thuộc Z)

=> \(16m^2+4=py^4\)

=> \(py^4⋮4\Rightarrow y^4⋮4\Rightarrow y^2⋮2\Rightarrow y⋮2\)=> Đặt y=2n ;n thuộc Z

Khi đó ta có:

\(16m^2+4=p.16n^2\Leftrightarrow4m^2+1=p.4n^2⋮4\)=> \(1⋮4\)( vô lí)

=> X chẵn loại

+) Với x lẻ

pt <=> \(x^4+4=py^4\)

<=> \(\left(x^2+2x+2\right)\left(x^2-2x+2\right)=py^4\)(i)

Gọi  \(\left(x^2+2x+2;x^2-2x+2\right)=d\)(1)

=> \(x^2+2x+2⋮d\)

    \(x^2-2x+2⋮d\)

=.> \(\left(x^2+2x+2\right)-\left(x^2-2x+2\right)=4x⋮d\)

Vì x lẻ => d lẻ 

=> \(x⋮d\)

=> \(2⋮d\Rightarrow d=1\)

Do đó: \(\left(2x^2+2x+2;2x^2-2x+2\right)=1\)(ii)

Từ (i) và (ii) có thể đặt: với \(ab=y^2\)sao cho:

 \(x^2+2x+2=pa^2;\)

\(x^2-2x+2=b^2\)<=> \(\left(x-1\right)^2+1=b^2\)\(\Leftrightarrow\left(x-1-b\right)\left(x-1+b\right)=-1\)

<=> x=b=1 hoặc x=1; b=-1

Với x=1 => a^2.p=5 => p=5  

4 tháng 12 2018

ta có

=\(\frac{1!}{1!2}+\frac{2!2}{2!3!}+\frac{3!3}{3!4!}+...+\frac{6!6}{n!\left(n+1\right)!}=\frac{5039}{5040}->n=6\)

11 tháng 9 2019

1a

\(A=\frac{3}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^4+b^4}{2}\ge\frac{6}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^2+b^2\right)^2}{2}}{2}\)

\(\ge10+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{4}=10+\frac{1}{16}=\frac{161}{16}\)

Dau '=' xay ra khi \(a=b=\frac{1}{2}\)

Vay \(A_{min}=\frac{161}{16}\)

11 tháng 9 2019

1b.\(B=\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^8+b^8}{4}\ge\frac{2}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^4+b^4\right)^2}{2}}{4}\)

\(\ge6+\frac{\left[\frac{\left(a^2+b^2\right)^2}{2}\right]^2}{8}\ge6+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{32}=6+\frac{1}{128}=\frac{769}{128}\)

Dau '=' xay ra khi \(a=b=\frac{1}{2}\)

Vay \(B_{min}=\frac{769}{128}\)khi \(a=b=\frac{1}{2}\)

23 tháng 12 2018

lp 8 mà khó thế -,- 

Có \(4=a^4+b^4+c^4+1\ge4\sqrt[4]{\left(abc\right)^4}=4abc\)\(\Leftrightarrow\)\(-abc\ge-1\)

\(\Rightarrow\)\(\frac{1}{4-ab}+\frac{1}{4-bc}+\frac{1}{4-ca}=\frac{a+b+c}{4-abc}\le\frac{a+b+c}{4-1}=\frac{a+b+c}{3}\)

Lại có \(3=a^4+b^4+c^4\ge\frac{\left(a^2+b^2+c^2\right)^2}{3}\ge\frac{\frac{\left(a+b+c\right)^4}{9}}{3}=\frac{\left(a+b+c\right)^4}{27}\)

\(\Leftrightarrow\)\(\left(a+b+c\right)^4\le81\)\(\Leftrightarrow\)\(a+b+c\le3\)

\(\Rightarrow\)\(\frac{1}{4-ab}+\frac{1}{4-bc}+\frac{1}{4-ca}\le\frac{a+b+c}{3}\le\frac{3}{3}=1\) ( đpcm ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)

23 tháng 12 2018

HSG khổ thế đấy cậu :((

5 tháng 2 2017

Ta có \(\frac{17}{3}=5+\frac{2}{3}=5+\frac{1}{\frac{3}{2}}=5+\frac{1}{1+\frac{1}{2}}\)

=> m=5;n=1;p=2

22 tháng 5 2018

Bạn xem lời giải ở đây nhé:

Câu hỏi của AgustD - Toán lớp 9 - Học toán với OnlineMath

22 tháng 5 2018

\(\frac{1}{a}+\frac{1}{b}>=\frac{4}{a+b}\Rightarrow2>=\frac{4}{a+b}\Rightarrow a+b>=2\)   (bđt cauchy schwarz adangj engel) 

\(a^4+b^2>=2\sqrt{a^4b^2}=2a^2b;a^2+b^4>=2\sqrt{a^2b^4}>=2ab^2;\frac{1}{a}+\frac{1}{b}>=2\sqrt{\frac{1}{a}\cdot\frac{1}{b}}\Rightarrow2>=\frac{2}{\sqrt{ab}}\Rightarrow ab>=1\)(bđt cosi)
\(\Rightarrow\frac{1}{a^4+b^2+2ab^2}+\frac{1}{a^2+b^4+2a^2b}< =\frac{1}{2a^2b+2ab^2}+\frac{1}{2ab^2+2a^2b}=\frac{2}{2a^2b+2ab^2}=\frac{2}{2ab\left(a+b\right)}\)

\(=\frac{1}{ab\left(a+b\right)}< =\frac{1}{1\cdot2}=\frac{1}{2}\)

dấu = xảy ra khi a=b=1

18 tháng 2 2018

6) Ta có

\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)

\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+2xz+yz+2xy+zx+2yz}\)

\(\Leftrightarrow A\ge\frac{1}{3\left(xy+yz+zx\right)}\ge\frac{1}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)