K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2018

Xét khai triển

1 + x 2 n + 1 = C 2 n + 1 0 + C 2 n + 1 1 x + C 2 n + 1 2 x 2 + C 2 n + 1 3 x 3 + C 2 n + 1 4 x 4 + . . . + C 2 n + 1 2 n + 1 x 2 n + 1

Lấy đạo hàm cả hai vế ta được

2 n + 1 x 2 n = C 2 n + 1 1 - 2 x C 2 n + 1 2 + 3 x 2 C 2 n + 1 3 - 4 x 3 . C 2 n + 1 4 + . . + 2 n + 1 x 2 n C 2 n + 1 2 n + 1

Thay x = -2 vào ta được

2 n + 1 x 2 n = C 2 n + 1 1 + 2 x . 2 . C 2 n + 1 2 + 3 x 2 C 2 n + 1 3 - 4 x 3 C 2 n + 1 4 + . . + 2 n + 1 x 2 n C 2 n + 1 2 n + 1

Kết hợp với giả thiết bài toán ta được:  2 n + 1 = 2019 ⇔ n = 2019

Vậy n = 1009 là giá trị cần tìm

Đáp án A

22 tháng 2 2016

\(\frac{n+3}{n-2}=\frac{n-2}{n-2}+\frac{5}{n-2}=1+\frac{5}{n-2}\)

Để n+3/n-2 là số nguyên thì: n-2 thuộc Ư(5)={1;-1;5;-5}

=>n=3;1;7;-3

Với n=3 => n+3/n-2 nguyên dương

       n=1 => n+3/n-2 nguyên âm

       n=7 =>n+3/n-2 nguyên dương

       n=-3 =>n+3/n-2 nguyên âm

Vậy n=3;7

25 tháng 4 2017

sao trả lời ít vậy ?uccheuccheucche

19 tháng 2 2016

11,

a, 4x-3\(\vdots\) x-2 1

    x-2\(\vdots\) x-2\(\Rightarrow\) 4(x-2)\(\vdots\) x-2\(\Rightarrow\) 4x-8\(\vdots\) x-2 2

Từ 12 ta có:

(4x-3)-(4x-8)\(\vdots\) x-2

\(\Rightarrow\) 4x-3-4x+8\(\vdots\) x-2

\(\Rightarrow\)       5       \(\vdots\) x-2

\(\Rightarrow\) x-2\(\in\) Ư(5)

\(\Rightarrow\) x-2\(\in\){-5;-1;1;5}

\(\Rightarrow\) x\(\in\) {-3;1;3;7}

Vậy......

Phần b và c làm tương tự như phần a pn nhé! haha

9 tháng 3 2016

lam nhanh giup minh nha minh se tick cho

9 tháng 3 2016

nhiều bài quá mình chỉ làm được bài 1,3,4,5

bài 2 mình đang suy nghĩ

bạn có thể vào Hỏi đáp Toánđể hỏi bài !

AH
Akai Haruma
Giáo viên
8 tháng 1 2017

Lời giải:

\(A=a_1a_2+a_2a_3+....+a_{n-1}a_n+a_na_1=0\)

Nếu $n$ lẻ, ta thấy tổng $A$ gồm lẻ số hạng, mỗi số hạng có giá trị $1$ hoặc $-1$ nên $A$ lẻ \(\Rightarrow A\neq 0\) (vô lý)

Do đó $n$ chẵn. Nếu $n$ có dạng $4k+2$. Vì $A=0$ nên trong $4k+2$ số hạng trên sẽ có $2k+1$ số có giá trị là $1$ và $2k+1$ số có giá trị $-1$. Vì mỗi số $a_i$ trong $A$ xuất hiện $2$ lần nên \(a_1a_2a_2a_3....a_{n-1}a_na_{n}a_{1}=(a_1a_2...a_n)^2=1^{2k+1}(-1)^{2k+1}=-1\) (vô lý)

Do đó $n$ phải có dạng $4k$, tức là $n$ chia hết cho $4$ (đpcm)

31 tháng 3 2016

C. n=-2

31 tháng 3 2016

Để A không là phân số thì n + 2 = 0

n = 0 - 2

n = -2

8 tháng 10 2015

ĐK: \(n-1\ge4\)

áp dụng công thức tổ hợp và chỉnh hợp ta có

\(\frac{\left(n-1\right)!}{4!\left(n-5\right)!}-\frac{\left(n-1\right)!}{3!\left(n-4\right)!}-\frac{5}{4}\frac{\left(n-2\right)!}{\left(n-4\right)!}=0 \Rightarrow\frac{\left(n-1\right)\left(n-2\right)\left(n-3\right)\left(n-4\right)}{4!}-\frac{\left(n-1\right)\left(n-2\right)\left(n-3\right)}{3!}-\frac{5}{4}\left(n-2\right)\left(n-3\right)=0\Rightarrow\left(n-2\right)\left(n-3\right)\left(\frac{\left(n-3\right)\left(n-4\right)}{4!}-\frac{n-1}{3!}-\frac{5}{4}\right)=0\)

giải pt đối chiếu với đk của n ta suy ra đc giá trị n cần tìm

1 tháng 2 2016

\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{n-1}+\sqrt{n}}=11\)

\(\Leftrightarrow-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-...-\sqrt{n-1}+\sqrt{n}=11\)

\(\Leftrightarrow\sqrt{n}-1=11\Leftrightarrow\sqrt{n}=12\Leftrightarrow n=144\)

1 tháng 2 2016

mìh ghi thiếu nha = 11 ở đằng sau nha