Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Với n=1 thì \(7^{^{ }3}+8^3\) chia hết cho \(7^2-56+8^2nên\) chia hết cho 19
Giả sử \(7^{k+2}+8^{k+2}\) chia hết cho 19 (k >_ 1)
Xét \(7^{k=3}+8^{2k+3}=7.7^{k+2}+64.8^{2k+1}=7.\left(7^{k+2}+8^{2k+1}\right)+57.8^{2k+1}\) chia hết cho 19
![](https://rs.olm.vn/images/avt/0.png?1311)
4.Nếu\(|x-1|=0\)
thì x = 1.=> lx+2l = 3 và lx+3l = 4.
=>lx-1l+lx+2l+lx+3l=0+3+4=7.
Nếu \(|x+2|=0\)
thì x=-2 =>lx-1l=3 và lx+3l=1.
=>lx-1l+lx+2l+lx+3l=0+3+1=4.
Nếu \(|x+3|=0\)
thì x=-3 =>lx-1l=4 và lx+2l=1.
=>lx-1l+lx+2l+lx+3l=5.
Vậy \(Min_{\text{lx-1l+lx+2l+lx+3l}}=4\).
![](https://rs.olm.vn/images/avt/0.png?1311)
a, x2+5y2+2y-4xy-3=0
\(\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)
Nếu \(y< -3\Rightarrow y+1< -2\Rightarrow\left(y+1\right)^2>4\Rightarrow VT>VP\)(vô lí)
\(\Rightarrow y\ge-3\Rightarrow y_{min}=-3\)
lúc đó \(\left(x+6\right)^2+4=4\Rightarrow x=-6\)
Vậy.................
a) \(x^2+5y^2+2y-4xy-3=0\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)-4=0\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)
Ta thấy : \(4=0+4\) là tổng hai số chính phương
Thử các giá trị \(\orbr{\begin{cases}\left(y+1\right)^2=0\\\left(y+1\right)^2=4\end{cases}}\)
Ta thấy : \(y=-3\) đạt giá trị nhỏ nhất.
Khi đó : \(x^2+5.\left(-3\right)^2+2\left(-3\right)-4x\left(-3\right)-3=0\)
\(\Leftrightarrow x=-6\)
Vậy : \(\left(x,y\right)=\left(-6,-3\right)\) với y nhỏ nhất thỏa mãn đề.
P/s : Không chắc lắm ....
![](https://rs.olm.vn/images/avt/0.png?1311)
a) n^2 + 2n - 4 = n^2 + 2n - 15 + 11
= (n^2 + 5n - 3n -15) + 11
= (n - 3)(n + 5) + 11 để n^2 + 2n - 4 chia hết cho 11
<=> (n - 3).(n +5) chia hết cho 11
<=> n - 3 chia hết cho 11 hoặc n + 5 chia hết cho 11 ( Vì 11 là số nguyên tố)
n- 3 chia hết cho 11 <=> n = 11k + 3 ( k nguyên)
n + 5 chia hết cho 11 <=> n = 11k' - 5 ( k' nguyên)
Vậy với n = 11k + 3 hoặc n = 11k' - 5 thì.....
b)Sửa thành 2n^3 + n^2 +7n+1 mới lm đc nha!!
2n^3 + n^2 + 7n + 1 = n^2. (2n - 1) + 2n^2 + 7n + 1
= n^2. (2n -1) + n.(2n -1) + 8n + 1
= (n^2 + n)(2n -1) + 4.(2n -1) + 5
= (n^2 + n + 4)(2n -1) + 5
Để 2n^3 + n2 + 7n + 1 chia hết cho 2n - 1
<=> (n^2 + n + 4)(2n -1) + 5 chia hết cho 2n -1
<=> 5 chia hết cho 2n -1
<=> 2n - 1 ∈Ư(5) = {-5;-1;1;5}
.......
![](https://rs.olm.vn/images/avt/0.png?1311)
TH1) Với n = 6k
ta có: \(\left(n+1\right)\left(2n+1\right)=\left(6k+1\right)\left(12k+1\right)\) không chia hết cho 6
=> Loại
TH2) Với n = 6k+1
ta có: \(\left(n+1\right)\left(2n+1\right)=\left(6k+2\right)\left(12k+3\right)⋮6\)
=> \(A=\frac{\left(6k+2\right)\left(12k+3\right)}{6}=\left(3k+1\right)\left(4k+1\right)\)là số chính phương
Lại có: ( 3k + 1 ; 4k + 1 ) = ( 3k + 1 ; k ) = ( 2k + 1 ; k ) = ( k + 1 ; k ) = ( k ; 1 ) = 1
=> 3k + 1 và 4k + 1 đồng thời là 2 số chính phương
+) Với k \(\equiv\)\(1,3,5,7\)(mod 8 ) => 4k + 1 không là số cp
+) Với k \(\equiv\)2; 4; 6 ( mod 8) => 3k + 1 không là số chính phương
=> k \(\equiv\)0 ( mod 8) => k = 8h
=> Tìm h bé nhất để 24h + 1 và 32h + 1 là số chính phương(1)
+) Với h \(\equiv\)\(3,4,6\)( mod7) => 24k + 1 không là số chính phương
+) Với h \(\equiv\)1 (mod 7 ) => 32h + 1 không là số cp
=> h \(\equiv\)0; 2; 5 (mod 7 )
=> h = 7m hoặc h = 7n + 2 hoặc h = 7t + 7 ( với m;n; t nguyên dương )
Nếu m = 1 => h = 7 => 24h + 1 = 169 và 32h + 1 = 225 là hai số chính phương và h nhỏ nhất
=> n = 6k + 1 và k = 8h = 56
=> n = 337
=> A = 38025 là số chính phương
TH3) Với n = 6k + 2
ta có: \(\left(n+1\right)\left(2n+1\right)=\left(6k+3\right)\left(12k+5\right)\)không chia hết cho 6
TH4) Với n = 6k + 3
ta có: \(\left(n+1\right)\left(2n+1\right)=\left(6k+4\right)\left(12k+7\right)\)không chia hết cho 6
TH5) Với n = 6k + 4
ta có: \(\left(n+1\right)\left(2n+1\right)=\left(6k+5\right)\left(12k+9\right)\)không chia hết cho 6
TH6) Với n = 6k + 5
ta có \(\left(n+1\right)\left(2n+1\right)=\left(6k+6\right)\left(12k+11\right)⋮6\)
=> \(A=\frac{\left(6k+6\right)\left(12k+11\right)}{6}=\left(k+1\right)\left(12k+11\right)\)
mà ( k + 1; 12k + 11 ) = 1
=> k + 1 và 12k + 11 là 2 số chính phương
tuy nhiên 12k + 11 chia 12 dư 11 mà 1 số chính phương chia 12 không dư 11
=> Trường hợp này loại
Vậy n = 337
ta có
\(A=n\left(n^2+7n+6\right)=n.\left(n+1\right)\left(n+6\right)\)
dễ thấy n và (n+1)(n+6) không đồng thời chi hết cho 5
mà A lại chia hết cho 125 nên
\(\orbr{\begin{cases}n⋮125\\\left(n+1\right)\left(n+6\right)⋮125\end{cases}}\)n chia hết cho 125 suy ra n nhỏ nhất là 125
(n+1)(n+6) chia hết cho 125\(\Rightarrow\orbr{\begin{cases}n+1⋮25\\n+6⋮5\end{cases}}\)hoặc \(\orbr{\begin{cases}n+1⋮5\\n+6⋮25\end{cases}}\)
từ đó ta tìm được hai giá trị n nhỏ nhất là n=24 hoặc n=19
vậy n=19 là số dương nhỏ nhất thỏa mãn