Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)
Trước hết ta chứng minh \(\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt{a\left(b+c\right)}\le\dfrac{a+b+c}{2}\)\(\Rightarrow1\ge\dfrac{2\sqrt{a\left(b+c\right)}}{a+b+c}\)
\(\Rightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\). Ta lại có:
\(\sqrt{\dfrac{a}{b+c}}=\dfrac{\sqrt{a}}{\sqrt{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)
Thiết lập các BĐT tương tự:
\(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c};\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}\ge2\)
Dấu "=" không xảy ra nên ta có ĐPCM
Lưu ý: lần sau đăng từng bài 1 thôi nhé !
1) Áp dụng liên tiếp bđt \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với a;b là 2 số dương ta có:
\(\dfrac{1}{2a+b+c}=\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{\dfrac{1}{a+b}+\dfrac{1}{a+c}}{4}\)\(\le\dfrac{\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}}{16}\)
TT: \(\dfrac{1}{a+2b+c}\le\dfrac{\dfrac{2}{b}+\dfrac{1}{a}+\dfrac{1}{c}}{16}\)
\(\dfrac{1}{a+b+2c}\le\dfrac{\dfrac{2}{c}+\dfrac{1}{a}+\dfrac{1}{b}}{16}\)
Cộng vế với vế ta được:
\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}.\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=1\left(đpcm\right)\)
Chắc đề bị nhầm rồi.
\(\dfrac{a}{\sqrt{b+1}}+\dfrac{b}{\sqrt{c+1}}+\dfrac{c}{\sqrt{a+1}}\ge2\sqrt{2}\left(\dfrac{a}{3+b}+\dfrac{b}{3+c}+\dfrac{c}{3+a}\right)\)
\(\ge2\sqrt{2}.\dfrac{\left(a+b+c\right)^2}{3\left(a+b+c\right)+\left(ab+bc+ca\right)}\ge2\sqrt{2}.\dfrac{9}{9+\dfrac{\left(a+b+c\right)^2}{3}}=2\sqrt{2}.\dfrac{9}{12}=\dfrac{3}{\sqrt{2}}\)
Ta có BĐT phụ \(\dfrac{1+\sqrt{a}}{1-a}\ge4a+1\)
\(\Leftrightarrow-\dfrac{\sqrt{a}\left(2\sqrt{a}-1\right)^2}{\sqrt{a}-1}\ge0\forall\dfrac{1}{4}< a< 0\)
Tương tự cho 3 BĐT còn lại ta cũng có:
\(\dfrac{1+\sqrt{b}}{1-b}\ge4b+1;\dfrac{1+\sqrt{c}}{1-c}\ge4c+1;\dfrac{1+\sqrt{d}}{1-d}\ge4d+1\)
Cộng theo vế 4 BĐT trên ta có:
\(VT\ge4\left(a+b+c+d\right)+4=8=VP\)
Xảy ra khi \(a=b=c=d=\dfrac{1}{4}\)
Ta cần chứng minh :
\(\dfrac{1+\sqrt{a}}{1-a}\ge4a+1\) \(\forall a\in\left(0;\dfrac{1}{4}\right)\)
\(\Leftrightarrow1+\sqrt{a}\ge\left(4a+1\right)\left(1-a\right)\)
\(\Leftrightarrow1+\sqrt{a}\ge4a-4a^2+1-a\)
\(\Leftrightarrow4a^2-4a-1+a+1+\sqrt{a}\ge0\)
\(\Leftrightarrow4a^2-3a+\sqrt{a}\ge0\)
\(\Leftrightarrow\left(4a^2-a\right)-\left(2a-\sqrt{a}\right)\ge0\)
\(\Leftrightarrow\left(2a-\sqrt{a}\right)\left(2a+\sqrt{a}\right)-\left(2a-\sqrt{a}\right)\ge0\)
\(\Leftrightarrow\left(2a-\sqrt{a}\right)\left(2a+\sqrt{a}-1\right)\ge0\)
Ta có: \(2a-\sqrt{a}=\left(\sqrt{2a}-\dfrac{\sqrt{2}}{4}\right)^2-\dfrac{1}{8}\ge0\) \(\forall a\in\left(0;\dfrac{1}{4}\right)\)
\(\left(2a+\sqrt{a}-1\right)=\left(\sqrt{2a}+\dfrac{\sqrt{2}}{4}\right)^2-\dfrac{9}{8}\ge0\)
\(\forall a\in\left(0;\dfrac{1}{4}\right)\)
Vậy: \(\dfrac{1+\sqrt{a}}{1-a}\ge4a+1\) \(\forall a\in\left(0;\dfrac{1}{4}\right)\)
Tương tự: \(\dfrac{1+\sqrt{b}}{1-b}\ge4b+1\forall b\in\left(0;1\right)\)
\(\dfrac{1+\sqrt{c}}{1-c}\ge4c+1\forall c\in\left(0;\dfrac{1}{4}\right)\)
\(\dfrac{1+\sqrt{d}}{1-d}\ge4d+1\forall d\in\left(0;\dfrac{1}{4}\right)\)
Cộng các BĐT vừa chứng minh, ta được:
\(\dfrac{1+\sqrt{a}}{1-a}+\dfrac{1+\sqrt{b}}{1-b}+\dfrac{1+\sqrt{c}}{1-c}+\dfrac{1+\sqrt{d}}{1-d}\ge4\left(a+b+c+d\right)+4=8\)
Vậy: Ta suy ra được điều phải chứng minh
a: \(=\dfrac{\sqrt{a}-1}{\sqrt{a}\left(a-\sqrt{a}+1\right)}\cdot\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{1}\)
\(=a-1\)
b: \(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\left(\dfrac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}+\dfrac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}\right)\)
\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\dfrac{\sqrt{ab}+b+\sqrt{ab}-b}{\sqrt{a}\left(a-b\right)}\)
\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{1}{\sqrt{a}}\)
c: \(=\dfrac{a\sqrt{b}+b}{a-b}\cdot\sqrt{\dfrac{ab+b^2-2b\sqrt{ab}}{a^2+2a\sqrt{b}+b}}\cdot\left(\sqrt{a}+\sqrt{b}\right)\)
\(=\dfrac{\sqrt{b}\left(a+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\cdot\sqrt{\dfrac{b\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(a+\sqrt{b}\right)^2}}\)
\(=\dfrac{\sqrt{b}\left(a+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\cdot\dfrac{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{a+\sqrt{b}}=b\)
Lời giải:
Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow ab+bc+ac=0\)
Khi đó:
\((\sqrt{a+c}+\sqrt{b+c})^2=a+c+b+c+2\sqrt{(a+c)(b+c)}\)
\(=a+b+2c+2\sqrt{ab+ac+bc+c^2}=a+b+2c+2\sqrt{c^2}\)
\(=a+b+2c+2|c|\)
Vì $a,b$ dương nên \(\frac{-1}{c}=\frac{1}{a}+\frac{1}{b}>0\Rightarrow c< 0\Rightarrow 2|c|=-2c\)
Do đó:
\((\sqrt{a+c}+\sqrt{b+c})^2=a+b+2c+2|c|=a+b+2c+(-2c)=a+b\)
\(\Rightarrow \sqrt{a+c}+\sqrt{b+c}=\sqrt{a+b}\)
b) \(\dfrac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\dfrac{2b}{a-b}\)
\(=\dfrac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\dfrac{2b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\dfrac{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)-\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)-2b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\dfrac{a+\sqrt{ab}-\sqrt{ab}+b-\sqrt{ab}+b-2b}{a-b}\)
\(=\dfrac{a}{a-b}\)