Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(u_n-n^2-n=u_{n-1}-\left(n-1\right)^2-\left(n-1\right)\)
Đặt \(v_n=u_n-n^2-n\Rightarrow\left\{{}\begin{matrix}v_1=0\\v_n=v_{n-1}\end{matrix}\right.\)
\(\Rightarrow v_n=v_{n-1}=v_{n-2}=...=v_1=0\)
\(\Rightarrow u_n-n^2-n=0\Rightarrow u_n=n^2+n\)
\(\Rightarrow n^2+n< 100\Rightarrow n\le9\)
\(u_n=\frac{n+1}{n-1}u_{n-1}\)
\(u_{n-1}=\frac{n-1+1}{n-1-1}u_{n-2}=\frac{n}{n-2}u_{n-2}\)
\(u_{n-2}=\frac{n-1}{n-3}u_{n-3}\)
...
\(u_2=\frac{2+1}{2-1}u_1\)
Nhân vế với vế:
\(u_nu_{n-1}u_{n-2}...u_2=\frac{\left(n+1\right)n\left(n-1\right)...3}{\left(n-1\right)\left(n-2\right)\left(n-3\right)...1}u_{n-1}u_{n-2}u_{n-3}...u_1\)
\(\Leftrightarrow u_n=\frac{n\left(n+1\right)}{2}u_1=n\left(n+1\right)\)
\(u_n< 100\Rightarrow n^2+n< 100\)
\(\Leftrightarrow n^2+n-100< 0\Rightarrow n\le9\Rightarrow n=\left\{1;2;...;9\right\}\)
Dãy số này sai, \(u_3\) không xác định, do đó ko thể truy hồi được từ \(u_4\) trở đi
Muốn dãy số xác định thì \(n>4\)
Dãy số là cấp số nhân với \(u_1=2;q=4\)
\(\Rightarrow u_n=2.4^{n-1}\)
\(\Rightarrow2.4^{n-1}< 1000\)
\(\Rightarrow4^{n-1}< 500\)
Mà \(4^4=256;4^5=512\Rightarrow4^{n-1}\le4^4\)
\(\Rightarrow n\le5\Rightarrow n=\left\{1;2;3;4;5\right\}\)
\(\Leftrightarrow\left\{{}\begin{matrix}u_1=1\\\frac{u_n}{n}=\frac{u_{n-1}}{n-1}+1\end{matrix}\right.\)
Đặt \(v_n=\frac{u_n}{n}\Rightarrow\left\{{}\begin{matrix}v_1=1\\v_n=v_{n-1}+1\end{matrix}\right.\)
\(\Rightarrow v_n\) là CSC với công sai \(d=1\)
\(\Rightarrow v_n=1+\left(n-1\right).1=n\)
\(\Rightarrow\frac{u_n}{n}=n\Rightarrow u_n=n^2\)
Câu b có vẻ đề sai, số hạng cuối không thể là \(u_n\) mà phải là 1 số hữu hạn ví dụ \(u_{2016}\) gì đó
Hoặc nếu nó là \(u_n\) thì đề sẽ là "tìm n lớn nhất sao cho..."
Dù sao từ tổng: \(\sum u_n=\sum n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\) có thể dễ dàng giải được khi đề bài chính xác
1) Có \(u_{n+1}-u_n=\dfrac{1}{2}u^2_n-2u_n+2=\dfrac{1}{2}\left(u_n-2\right)^2\) (1)
+) CM \(u_n>2\) (n thuộc N*)
n=1 : u1= 5/2 > 2 (đúng)
Giả sử n=k, uk > 2 (k thuộc N*)
Ta cần CM n = k + 1. Thật vậy ta có:
\(u_{k+1}=\dfrac{1}{2}u^2_k-u_k+2=\dfrac{1}{2}\left(u_k-2\right)^2+u_k\) (đúng)
Vậy un > 2 (n thuộc N*) (2)
Từ (1) (2) => un+1 - un > 0, hay un+1 > un
=> (un) là dãy tăng => \(\lim\limits_{n\rightarrow\infty}u_n=+\infty\)
2) \(2u_{n+1}=u^2_n-2u_n+4\)
\(\Leftrightarrow2u_{n+1}-4=u^2_n-2u_n\)
\(\Leftrightarrow2\left(u_{n+1}-2\right)=u_n\left(u_n-2\right)\)
\(\Leftrightarrow\dfrac{1}{u_{n+1}-2}=\dfrac{2}{u_n\left(u_n-2\right)}=\dfrac{1}{u_n-2}-\dfrac{1}{u_n}\)
\(\Leftrightarrow\dfrac{1}{u_n}=\dfrac{1}{u_n-2}-\dfrac{1}{u_{n+1}-2}\)
\(S=\dfrac{1}{u_1}+\dfrac{1}{u_2}+...+\dfrac{1}{u_n}\)
\(=\dfrac{1}{u_1-2}-\dfrac{1}{u_2-2}+\dfrac{1}{u_2-2}+...-\dfrac{1}{u_{n+1}-2}\)
\(=\dfrac{1}{u_1-2}-\dfrac{1}{u_{n+1}-2}\)
\(=2-\dfrac{1}{u_{n+1}-2}\)
\(\Leftrightarrow\lim\limits_{n\rightarrow\infty}S=2\)
Dãy là CSC với \(\left\{{}\begin{matrix}u_1=3\\d=4\end{matrix}\right.\)
\(\Rightarrow u_n=3+\left(n-1\right)4=4n-1\)
\(\Rightarrow4n-1< 100\Rightarrow n\le25\)