\(x-2\sqrt{x}=0\) (x\(\ge\)0)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2018

\(x-2.\sqrt{x}=0\)

\(\Leftrightarrow\sqrt{x^2}-2\sqrt{x}=0\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\sqrt{x}=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

Vậy ...

1 tháng 7 2017

a) (x - 1)5 = -243

<=> (x - 1)5 = (-3)5

=> x - 1 = -3

=> x = -2

b) \(x-2\sqrt{x}=0\)

\(\sqrt{x^2}-2\sqrt{x}=0\)

\(\sqrt{x}.\left(\sqrt{x}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\\sqrt{x}=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

1 tháng 7 2017

Nguyễn Huy Tú :•~•

22 tháng 1 2018

a, \(\left(x-1\right)^5=-243\)

\(\Leftrightarrow\left(x-1\right)^5=-3^5\)

\(\Leftrightarrow x-1=-3\Leftrightarrow x=-2\)

b,\(\dfrac{x+2}{11}+\dfrac{x+2}{12}+\dfrac{x+2}{13}=\dfrac{x+2}{14}+\dfrac{x+2}{15}\)

\(\dfrac{x+2}{11}+\dfrac{x+2}{12}+\dfrac{x+2}{13}-\dfrac{x+2}{14}-\dfrac{x+2}{15}=0\)

\(\Leftrightarrow\left(x+2\right).\left(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}-\dfrac{1}{14}-\dfrac{1}{15}\right)=0\)

\(do\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}-\dfrac{1}{14}-\dfrac{1}{15}\ne0\)

\(\Rightarrow x+2=0\Leftrightarrow x=-2\)

23 tháng 1 2018

c, \(x-2\sqrt{x}=0\Leftrightarrow\sqrt{x^2}-2\sqrt{x}=0\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\\sqrt{x}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=\sqrt{2}\end{matrix}\right.\)

18 tháng 4 2018

x−2.√x=0

⇔√x2−2√x=0

⇔√x(√x−2)=0

⇔[√x=0√x−2=0⇔[x=0√x=2

⇔[x=0;x=4

18 tháng 4 2018

rảnh ak đăng rồi trả ời lun ak

12 tháng 3 2017

\(x-2\sqrt{x}=0\)

\(\Leftrightarrow\left(\sqrt{x}\right)^2-2\sqrt{x}=0\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)

\(\Rightarrow\sqrt{x}=0\) và \(\sqrt{x}-2=0\)

\(\Rightarrow x=0\) và \(\sqrt{x}=2\)

\(\Rightarrow x=0\) và \(x=4\)

12 tháng 3 2017

\(\sqrt{x}\left(\sqrt{x}-2\right)=0\)

4 tháng 2 2019

ĐK : \(x\ge0\)

\(x-2\sqrt{x}=0\Rightarrow x=2\sqrt{x}\)

Bình phương hai vế ta có :

\(x^2=4x\Leftrightarrow x^2-4x=0\)

\(\Rightarrow x(x-4)=0\Rightarrow\hept{\begin{cases}x=0\\x=4\end{cases}}\)

1 tháng 12 2016

Đk:\(x\ge0\)

\(x-2\sqrt{x}=0\Leftrightarrow x=2\sqrt{x}\)

Bình phương 2 vế ta có:

\(x^2=4x\Leftrightarrow x^2-4x=0\)

\(\Leftrightarrow x\left(x-4\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)

21 tháng 3 2017

x - 2\(\sqrt{x}\) = 0

<=> \(\sqrt{x}\)(\(\sqrt{x}\)- 2) = 0

<=> x = 0 hoặc x = 4

21 tháng 3 2017

\(x-2\sqrt{x}=0\)

\(\Leftrightarrow\sqrt{x}^2-2\sqrt{x}=0\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\\sqrt{x}=2\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=4\end{cases}}}\)

6 tháng 1 2020

\(x-2\sqrt{x}=0\)\(\Leftrightarrow x=2\sqrt{x}\)

\(\Leftrightarrow x^2=\left(2\sqrt{x}\right)^2\)\(\Leftrightarrow x^2=4x\)

\(\Leftrightarrow x^2-4x=0\)\(\Leftrightarrow x\left(x-4\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)( thoả mãn điều kiện )

Vậy \(x=0\)hoặc \(x=4\)