Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x - 1)5 = -243
<=> (x - 1)5 = (-3)5
=> x - 1 = -3
=> x = -2
b) \(x-2\sqrt{x}=0\)
\(\sqrt{x^2}-2\sqrt{x}=0\)
\(\sqrt{x}.\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\\sqrt{x}=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Đặt \(\hept{\begin{cases}x^2+5=a^2\\x^2-5=b^2\end{cases}\Rightarrow x^2+5}-x^2+5=a^2-b^2\)
\(\Rightarrow a^2-b^2=10\)
\(\Rightarrow\left(a-b\right)\left(a+b\right)=10\)
Vì \(\hept{\orbr{\begin{cases}\left(a-b\right)\left(a+b\right)⋮̸2\\\left(a-b\right)\left(a+b\right)⋮4\end{cases}}}\)(do a-b và a+b luôn có cùng số dư khi chia cho 2 )
Vậy không tìm đượcx thỏa mãn x^2+5 và x^2-5 là bình phương của các số hữu tỉ
Vì x2 + 5 và x2 - 5 đều là bình phương của các số hữu tỉ nên t x2 + 5 = a2 ;x2 - 5 = b2
Lập tích (x2 + 5).(x2 - 5 ) = x2 - 52 = a2 .b2
1)
x2=x5
x2 - x5 = 0
x2 . 1 - x2 . x3 = 0
x2 . (1-x3) = 0
Th1: x2 = 0 Th2: (1-x3) = 0
x = 0 x3 = 1-0
x3 = 1
x = 1
a,\(\left(2x-1\right)^6=\left(2x-1\right)^8\)
\(\Leftrightarrow\left(2x-1\right)^6-\left(2x-1\right)^8=0\)
\(\Leftrightarrow\left(2x-1\right).\left[1-\left(2x-1\right)^2\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\1-\left(2x-1\right)^2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}2x=1\\\left(2x-1\right)^2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\2x-1=1\\2x-1=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\2x=2\\2x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\x=1\\x=0\end{cases}}\)
\(b,5^x+5^{x+1}=650\)
\(\Leftrightarrow5^x+5^x.5^2=650\)
\(\Leftrightarrow5^x.\left(1+5^2\right)\)\(=650\)
\(\Leftrightarrow5^x.26=650\)
\(\Leftrightarrow5^x=650\div26\)
\(\Leftrightarrow5^x=25\)
\(\Leftrightarrow5^x=5^2\)
\(\Leftrightarrow x=2\)
\(c,3^{x-1}+5.3^{x-1}=162\)
\(\Leftrightarrow3^{x-1}.\left(1+5\right)=162\)
\(\Leftrightarrow3^{x-1}.6=162\)
\(\Leftrightarrow3^{x-1}=162\div6\)
\(\Leftrightarrow3^{x-1}=27\)
\(\Leftrightarrow3^{x-1}=3^3\)
\(\Leftrightarrow x-1=3\)
\(\Leftrightarrow x=3+1\)
\(\Leftrightarrow x=4\)
Ta có: \(x^2=x^5\)
\(\Rightarrow x\in\left\{0;1\right\}\)
Vậy ...........
\(Ta \) \(có : x^2 =x^5\)
\(\Leftrightarrow\)\(x^2 -x^5 = 0\)
\(\Leftrightarrow\)\(x^2 . (1 - x^3 )=0\)
\(\Rightarrow\)\(x^2 = 0 \) \(hoặc \) \(1 - x^3 = 0\)
\(\Rightarrow\)\(x = 0 \) \(hoặc\) \(x^3=1\)
\(\Rightarrow\)\(x = 0\) \(hoặc\) \(x = 1\)
\(Vậy : x = 0\) \(hoặc \) \(x = 1\)
a) Ta có:
(x - 1)5 = - 243
=> (x - 1)5 = (-3)5
=> x - 1 = - 3
=> x = -3 + 1
=> x = -2
Vậy x = -2
b) Ta có:
\(\dfrac{x+2}{11}+\dfrac{x+2}{12}+\dfrac{x+2}{13}=\dfrac{x+2}{14}+\dfrac{x+2}{15}\)
\(\Rightarrow\left(x+2\right).\dfrac{1}{11}+\left(x+2\right).\dfrac{1}{12}+\left(x+2\right).\dfrac{1}{13}=\left(x+2\right).\dfrac{1}{14}+\left(x+2\right).\dfrac{1}{15}\)
=> \(\left(x+2\right).\left(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}\right)=\left(x+2\right).\left(\dfrac{1}{14}+\dfrac{1}{15}\right)\)
=> \(\left(x+2\right).\dfrac{431}{1716}=\left(x+2\right).\dfrac{29}{210}\)
=> \(\left(x+2\right).\dfrac{431}{1716}-\left(x+2\right).\dfrac{29}{210}=0\)
=> (x + 2).(\(\dfrac{431}{1716}-\dfrac{29}{210}\)) = 0
mà \(\dfrac{431}{1716}-\dfrac{29}{210}\) \(\ne\) 0
=> x + 2 = 0
=> x = -2
Vậy x = -2
c) Ta có :
\(\left|3x-2\right|+5x=4x-10\)
=> \(\left|3x-2\right|=4x-5x-10\)
=> \(\left|3x-2\right|=-x-10\)
=> 3x - 2 = -x - 10
hoặc 3x - 2 = -(-x -10)
*) Nếu 3x - 2 = -x - 10
=> 3x + x = -10 + 2
=> 4x = -8
=> x = -2
*) Nếu 3x - 2 = -(-x -10)
=> 3x - 2 = x +10
=> 3x - x = 10 + 2
=> 2x = 12
=> x = 6
Vậy x = -2 hoặc x = 6
\((x-1)^5=-243\)
\(\Rightarrow x-1=(-3)^5\)
\(\Rightarrow x-1=-3\)
\(\Rightarrow x=-3+1\)
\(\Rightarrow x=-2\)
\(\left(x-1\right)^5=-243\)
\(\Rightarrow\left(x-1\right)^5=\left(-3\right)^5\)
\(\Rightarrow x-1=-3\)
\(\Rightarrow x=-3+1\)
\(\Rightarrow x=-2\)
( x - 1 )\(^5\) = -243
\(\Rightarrow\) ( x - 1 )\(^5\) = (- 3 )\(^5\)
\(\Rightarrow\) x - 1 = - 3
\(\Rightarrow\) x = -3 + 1
x = -2
Vậy x = -2
( x - 1 )5 = -243
( x - 1 )5 = .......
Tách ( - 243 ) ra