\(^5\) = - 243

b) \(\dfra...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2018

a, \(\left(x-1\right)^5=-243\)

\(\Leftrightarrow\left(x-1\right)^5=-3^5\)

\(\Leftrightarrow x-1=-3\Leftrightarrow x=-2\)

b,\(\dfrac{x+2}{11}+\dfrac{x+2}{12}+\dfrac{x+2}{13}=\dfrac{x+2}{14}+\dfrac{x+2}{15}\)

\(\dfrac{x+2}{11}+\dfrac{x+2}{12}+\dfrac{x+2}{13}-\dfrac{x+2}{14}-\dfrac{x+2}{15}=0\)

\(\Leftrightarrow\left(x+2\right).\left(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}-\dfrac{1}{14}-\dfrac{1}{15}\right)=0\)

\(do\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}-\dfrac{1}{14}-\dfrac{1}{15}\ne0\)

\(\Rightarrow x+2=0\Leftrightarrow x=-2\)

23 tháng 1 2018

c, \(x-2\sqrt{x}=0\Leftrightarrow\sqrt{x^2}-2\sqrt{x}=0\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\\sqrt{x}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=\sqrt{2}\end{matrix}\right.\)

25 tháng 12 2017

a, \(\left(x-1\right)^5=-243\)

=> \(\left(x-1\right)^5=\left(-3\right)^5\)

=> x-1= -3

=> x= -2

25 tháng 12 2017

b, \(\dfrac{x+2}{11}+\dfrac{2+x}{12}+\dfrac{x+2}{13}=\dfrac{2+x}{14}+\dfrac{x+2}{15}\)

=> \(\dfrac{x+2}{11}+\dfrac{2+x}{12}+\dfrac{x+2}{13}-\dfrac{2+x}{14}+\dfrac{x+2}{15}=0\)

=>\(\dfrac{x+2+2+x+x+2-2+x+x+2}{11+12+13-14+15}\)

=> \(\dfrac{x+2}{37}=0\)

=> x+2= 0

=> x=-2

7 tháng 3 2017

a) Ta có:

(x - 1)5 = - 243

=> (x - 1)5 = (-3)5

=> x - 1 = - 3

=> x = -3 + 1

=> x = -2

Vậy x = -2

b) Ta có:

\(\dfrac{x+2}{11}+\dfrac{x+2}{12}+\dfrac{x+2}{13}=\dfrac{x+2}{14}+\dfrac{x+2}{15}\)

\(\Rightarrow\left(x+2\right).\dfrac{1}{11}+\left(x+2\right).\dfrac{1}{12}+\left(x+2\right).\dfrac{1}{13}=\left(x+2\right).\dfrac{1}{14}+\left(x+2\right).\dfrac{1}{15}\)

=> \(\left(x+2\right).\left(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}\right)=\left(x+2\right).\left(\dfrac{1}{14}+\dfrac{1}{15}\right)\)

=> \(\left(x+2\right).\dfrac{431}{1716}=\left(x+2\right).\dfrac{29}{210}\)

=> \(\left(x+2\right).\dfrac{431}{1716}-\left(x+2\right).\dfrac{29}{210}=0\)

=> (x + 2).(\(\dfrac{431}{1716}-\dfrac{29}{210}\)) = 0

mà \(\dfrac{431}{1716}-\dfrac{29}{210}\) \(\ne\) 0

=> x + 2 = 0

=> x = -2

Vậy x = -2

c) Ta có :

\(\left|3x-2\right|+5x=4x-10\)

=> \(\left|3x-2\right|=4x-5x-10\)

=> \(\left|3x-2\right|=-x-10\)

=> 3x - 2 = -x - 10

hoặc 3x - 2 = -(-x -10)

*) Nếu 3x - 2 = -x - 10

=> 3x + x = -10 + 2

=> 4x = -8

=> x = -2

*) Nếu 3x - 2 = -(-x -10)

=> 3x - 2 = x +10

=> 3x - x = 10 + 2

=> 2x = 12

=> x = 6

Vậy x = -2 hoặc x = 6

7 tháng 3 2017

Nguyễn Huy TúNguyễn Huy Thắngsoyeon_Tiểubàng giảiHoàng Thị Ngọc AnhAkai Haruma giúp mình bài này với

10 tháng 6 2017

Có:

\(\dfrac{x+2}{11}+\dfrac{x+2}{12}+\dfrac{x+2}{13}=\dfrac{x+2}{14}+\dfrac{x+2}{15}\)

\(\Leftrightarrow\dfrac{x+2}{11}+\dfrac{x+2}{12}+\dfrac{x+2}{13}-\dfrac{x+2}{14}-\dfrac{x+2}{15}=0\)

\(\Leftrightarrow\left(x+2\right)\left(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}-\dfrac{1}{14}-\dfrac{1}{15}\right)=0\)

Dấu "=" xảy ra:

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}-\dfrac{1}{14}-\dfrac{1}{15}=0\end{matrix}\right.\)

\(\left(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}-\dfrac{1}{14}-\dfrac{1}{15}\right)\ne0\)

\(\Leftrightarrow x-2=0\)

\(\Rightarrow x=0+2=2\)

Vậy \(x=2\).

Học tốt!vui

11 tháng 6 2017

\(\dfrac{x+2}{11}+\dfrac{x+2}{12}+\dfrac{x+2}{13}=\dfrac{x+2}{14}+\dfrac{x+2}{15}\)

\(\Rightarrow\left(\dfrac{1}{11}+\dfrac{1}{12}\right)\left(x+2\right)+\dfrac{x+2}{13}=\dfrac{x+2}{14}+\dfrac{x+2}{15}\)

\(\Rightarrow\dfrac{23\left(x+2\right)}{132}+\dfrac{x+2}{13}=\dfrac{x+2}{14}+\dfrac{x+2}{15}\)

\(\Rightarrow\left(\dfrac{23}{132}+\dfrac{1}{13}\right)\left(x+2\right)=\dfrac{x+2}{14}+\dfrac{x+2}{15}\)

\(\Rightarrow\dfrac{431\left(x+2\right)}{1716}=\dfrac{x+2}{14}+\dfrac{x+2}{15}\)

\(\Rightarrow\dfrac{431\left(x+2\right)}{1716}=\left(\dfrac{1}{14}+\dfrac{1}{15}\right)\left(x+2\right)\)

\(\Rightarrow\dfrac{431\left(x+2\right)}{1716}=\dfrac{29\left(x+2\right)}{210}\)

\(\Rightarrow\dfrac{431\left(x+2\right)}{1716}-\dfrac{29\left(x+2\right)}{210}=0\)

\(\Rightarrow\left(\dfrac{431}{6.286}-\dfrac{29}{6.35}\right)\left(x+2\right)=0\)

\(\Rightarrow\dfrac{1}{6}\left(\dfrac{431}{286}-\dfrac{29}{35}\right)\left(x+2\right)=-2\)

19 tháng 8 2017

a) Ta có : \(x - 2xy + y - 3 = 0\)

\(\Rightarrow-2xy+x+y=3\)

\(\Rightarrow-2.\left(-2xy+x+y\right)=-2.3\)

\(\Rightarrow4xy-2x-2y=-6\)

\(\Rightarrow4xy-2x-2y+1=-6+1\)

\(\Rightarrow2x.\left(2y-1\right).\left(2y-1\right)=-5\)

\(\Rightarrow\left(2y-1\right).\left(2x-1\right)=-5=1.\left(-5\right)=-5.1=\left(-1\right).5=5.\left(-1\right)\)

Tự lập bảng đi -.-

26 tháng 3 2018

Nhân từng vế bất đẳng thức ta được : (xyz)2 = 36xyz

+ Nếu một trong các số x,y,z bằng 0 thì 2 số còn lại cũng bằng 0

+ Nếu cả 3 số x,y,z khác 0 thì chia 2 vế cho xyz ta được xyz = 36

+ Từ xyz =36 và xy = z ta được z2 = 36 nên z = 6; z = -6

+ Từ xyz =36 và yz = 4x ta được 4x2 = 36 nên x = 3; x = -3

+ Từ xyz =36 và ta được 9y2 = 36 nên y = 2; y = -2

- Nếu z = 6 thì x và y cùng dấu nên x = 3, y = 2 hoặc x = -3 , y = -2

- Nếu z = -6 thì x và y trái dấu nên x = 3 ; y = -2 hoặc x = -3; y=2

Vậy có 5 bộ số (x, y, z) thoã mãn: (0,0,0); (3,2,6);(-3,-2,6);(3,-2,-6);(-3,2.-6)

bài 1)
a) \(\dfrac{11}{13}-\left(\dfrac{5}{42}-x\right)=-\left(\dfrac{15}{28}-\dfrac{11}{15}\right) \)
\(\left(\dfrac{5}{42}-x\right)=\dfrac{11}{13}+\dfrac{15}{28}-\dfrac{11}{15}\)
\(x=\dfrac{5}{42}-\dfrac{3541}{5460}=-\dfrac{413}{780}\)
b) \(\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|2,15\right|\)
\(\left|x+\dfrac{4}{15}\right|=-\left|2,15\right|+\left|3,75\right|=1,6\)
\(\Rightarrow x+\dfrac{4}{15}=1,6\) hoặc \(x+\dfrac{4}{15}=-1,6\)
\(\Rightarrow x=\dfrac{4}{3}\) hoặc \(x=-\dfrac{28}{15}\)
c) \(\dfrac{5}{3}-\left|x-\dfrac{3}{2}\right|=-\dfrac{1}{2}\)
\(\Rightarrow\left|x-\dfrac{3}{2}\right|=\dfrac{5}{3}+\dfrac{1}{2}=\dfrac{13}{6}\)
\(\Rightarrow x-\dfrac{3}{2}=\dfrac{13}{6}\) hoặc \(x-\dfrac{3}{2}=-\dfrac{13}{6}\)
\(\Rightarrow x=\dfrac{11}{3}\) hoặc \(x=-\dfrac{2}{3}\)
d)\(\left(x-\dfrac{2}{3}\right).\left(2x-\dfrac{3}{2}\right)=0\)
\(\Rightarrow x-\dfrac{2}{3}=0\) hoặc \(2x-\dfrac{3}{2}=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=\dfrac{3}{4}\end{matrix}\right.\)
3) a) \(\left(x^{^2}-4\right)^{^2}+\left(x+2\right)^{^2}=0\)
\(\left(x^{^2}-4\right)^{^2}\ge0,\left(x+2\right)^{^2}\ge0\) nên :
\(\left\{{}\begin{matrix}x^{^2}-4=0\\x+2=0\end{matrix}\right.\Rightarrow x=\pm2\)

b) \(\left(x-y\right)^{^2}+\left|y+2\right|=0\)
\(\left\{{}\begin{matrix}\left(x-y\right)^{^2}\ge0\\\left|y+2\right|\ge0\end{matrix}\right.\) nên \(\left\{{}\begin{matrix}x-y=0\\y+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-y=0\\y=-2\end{matrix}\right.\Rightarrow x=-2;y=-2\)
c) \(\left|x-y\right|+\left|y+\dfrac{9}{25}\right|=0\)
\(\left\{{}\begin{matrix}\left|x-y\right|\ge0\\\left|y+\dfrac{9}{25}\right|\ge0\end{matrix}\right.\) nên \(\left\{{}\begin{matrix}x-y=0\\y+\dfrac{9}{25}=0\end{matrix}\right.\Rightarrow y=-\dfrac{9}{25};x=-\dfrac{9}{25}\)
d) \(\left|\dfrac{1}{2}-\dfrac{1}{3}+x\right|=\left(-\dfrac{1}{4}\right)-\left|y\right|\)
\(\Rightarrow\left|\dfrac{1}{2}-\dfrac{1}{3}+x\right|+\left|y\right|=-\dfrac{1}{4}\)
\(\left\{{}\begin{matrix}\left|\dfrac{1}{2}-\dfrac{1}{3}+x\right|\ge0\\\left|y\right|\ge0\end{matrix}\right.\)\(\left|\dfrac{1}{2}-\dfrac{1}{3}+x\right|+\left|y\right|=-\dfrac{1}{4}\) nên không tồn tại x,y thỏa mãn đề bài .

27 tháng 6 2017

a, \(\dfrac{3}{4}+x=\dfrac{8}{13}\)

\(x=\dfrac{8}{13}-\dfrac{3}{4}\)

\(x=-\dfrac{7}{52}\)

b,\(\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\)

\(\dfrac{2}{5}+x=\dfrac{11}{12}-\dfrac{2}{3}\)

\(\dfrac{2}{5}+x=\dfrac{1}{4}\)

\(x=\dfrac{1}{4}-\dfrac{2}{5}\)

\(x=-\dfrac{3}{20}\)

c, \(2x\left(x-\dfrac{1}{7}\right)=0\)

\(2x-\dfrac{1}{7}=0\)

\(x-\dfrac{1}{7}=0:2\)

\(x-\dfrac{1}{7}=0\)

\(x=0-\dfrac{1}{7}\)

\(x=\dfrac{1}{7}\)

d, \(\dfrac{3}{4}+\dfrac{1}{4}\div x=\dfrac{2}{5}\)

\(\left(\dfrac{3}{4}+\dfrac{1}{4}\right):x=\dfrac{2}{5}\)

\(1:x=\dfrac{2}{5}\)

\(x=1:\dfrac{2}{5}\)

\(x=\dfrac{5}{2}\)

27 tháng 6 2017

a) \(\dfrac{3}{4}+x=\dfrac{8}{13}\)\(\Leftrightarrow\) \(x=\dfrac{8}{13}-\dfrac{3}{4}=\dfrac{-7}{52}\) vậy \(x=\dfrac{-7}{52}\)

b) \(\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\) \(\Leftrightarrow\) \(\dfrac{11}{12}-\dfrac{2}{5}-x=\dfrac{2}{3}\) \(\Leftrightarrow\) \(x=\dfrac{11}{12}-\dfrac{2}{5}-\dfrac{2}{3}=\dfrac{-3}{20}\) vậy \(x=\dfrac{-3}{20}\)

c) \(2x\left(x-\dfrac{1}{7}\right)=0\) \(\Leftrightarrow\) \(2x^2-\dfrac{2}{7}x=0\)

\(\Delta\) = \(\left(\dfrac{-2}{7}\right)^2-4.2.0=\dfrac{4}{49}>0\)

\(\Rightarrow\) phương trình có 2 nghiệm phân biệt

\(x_1=\dfrac{\dfrac{2}{7}+\sqrt{\dfrac{4}{49}}}{4}=\dfrac{1}{7}\)

\(x_2=\dfrac{\dfrac{2}{7}-\sqrt{\dfrac{4}{49}}}{4}=0\)

vậy \(x=0;x=\dfrac{1}{7}\)

19 tháng 11 2022

a: =>1/6x=-49/60

=>x=-49/60:1/6=-49/60*6=-49/10

b: =>3/2x-1/5=3/2 hoặc 3/2x-1/5=-3/2

=>x=17/15 hoặc x=-13/15

c: =>1,25-4/5x=-5

=>4/5x=1,25+5=6,25

=>x=125/16

d: =>2^x*17=544

=>2^x=32

=>x=5

i: =>1/3x-4=4/5 hoặc 1/3x-4=-4/5

=>1/3x=4,8 hoặc 1/3x=-0,8+4=3,2

=>x=14,4 hoặc x=9,6

j: =>(2x-1)(2x+1)=0

=>x=1/2 hoặc x=-1/2

21 tháng 6 2017

1)

a) \(0,25^x\cdot12^x=243\)

\(\Leftrightarrow\left(0,25\cdot12\right)^x=3^5\)

\(\Leftrightarrow3^x=3^5\)

\(\Leftrightarrow x=5\)

Vậy \(x=5\)

b) \(38^y:19^y=512\)

\(\Leftrightarrow2y\cdot y=512\)

\(\Leftrightarrow2y^2=512\)

\(\Leftrightarrow y^2=256\)

\(\Leftrightarrow\left[{}\begin{matrix}y=16\\y=-16\end{matrix}\right.\)

Vậy \(y_1=-16;y_2=16\)

2)

a) \(3^x+3^{x+2}=2430\)

\(\Leftrightarrow\left(1+3^2\right)\cdot3^x=2430\)

\(\Leftrightarrow\left(1+9\right)\cdot3^x=2430\)

\(\Leftrightarrow10\cdot3^x=2430\)

\(\Leftrightarrow3^x=243\)

\(\Leftrightarrow3^x=3^5\)

\(\Leftrightarrow x=5\)

Vậy \(x=5\)

b) \(2^{x+3}-2^x=224\)

\(\Leftrightarrow\left(2^3-1\right)\cdot2^x=224\)

\(\Leftrightarrow\left(8-1\right)\cdot2^x=224\)

\(\Leftrightarrow7\cdot2^x=224\)

\(\Leftrightarrow2^x=32\)

\(\Leftrightarrow2^x=2^5\)

\(\Leftrightarrow x=5\)

Vậy \(x=5\)

3)

a) \(\left(x-\dfrac{1}{4}\right)^2=\dfrac{4}{9}\)

\(\Leftrightarrow x-\dfrac{1}{4}=\pm\dfrac{2}{3}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{4}=\dfrac{2}{3}\\x-\dfrac{1}{4}=-\dfrac{2}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}+\dfrac{1}{4}\\x=-\dfrac{2}{3}+\dfrac{1}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{11}{12}\\x=-\dfrac{5}{12}\end{matrix}\right.\)

Vậy \(x_1=\dfrac{11}{12};x_2=-\dfrac{5}{12}\)

b) \(\left(x+0,7\right)^3=-27\)

\(\Leftrightarrow\left(x+\dfrac{3}{10}\right)^3=\left(-3\right)^3\)

\(\Leftrightarrow x+\dfrac{3}{10}=-3\)

\(\Leftrightarrow x=-3-\dfrac{3}{10}\)

\(\Leftrightarrow x=-\dfrac{37}{10}\)

Vậy \(x=-\dfrac{37}{10}\)

4)

a) \(\left(\dfrac{2}{5}-3x\right)^2=\dfrac{9}{25}\)

\(\Leftrightarrow\dfrac{2}{5}-3x=\pm\dfrac{3}{5}\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{2}{5}-3x=\dfrac{3}{5}\\\dfrac{2}{5}-3x=-\dfrac{3}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=-\dfrac{1}{5}\\3x=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{15}\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy \(x_1=-\dfrac{1}{15};x_2=\dfrac{1}{3}\)

b) \(\left(\dfrac{2}{3}x-\dfrac{1}{3}\right)^5=\dfrac{1}{243}\)

\(\Leftrightarrow\dfrac{2}{3}x-\dfrac{1}{3}=\dfrac{1}{3}\)

\(\Leftrightarrow2x-1=1\)

\(\Leftrightarrow2x=1+1\)

\(\Leftrightarrow2x=2\)

\(\Leftrightarrow x=1\)

Vậy \(x=1\)

21 tháng 6 2017

1. a) \(0,25^x.12^x=243\)

\(\Rightarrow\left(0,25.12\right)^x=243\)

\(\Rightarrow3^x=3^5\)

\(\Rightarrow x=5\)

Vậy \(x=5.\)

b) \(38^y:19^y=512\)

\(\Rightarrow\left(38:19\right)^y=512\)

\(\Rightarrow2^y=2^9\)

\(\Rightarrow y=9\)

Vậy \(y=9.\)

2) a) \(3^x+3^{x+2}=2430\)

\(\Rightarrow3^x\left(1+9\right)=2430\)

\(\Rightarrow3^x=243=3^5\)

\(\Rightarrow x=5\)

Vậy x=5.

b) \(2^{x+3}-2^x=224\)

\(\Rightarrow2^x\left(8-1\right)=224\)

\(\Rightarrow2^x=32=2^5\)

\(\Rightarrow x=5\)

Vậy x=5.

Bài 3: dễ tự làm.

21 tháng 8 2017

\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)

\(\Rightarrow\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\)

\(\Rightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)

\(\Rightarrow x+1=0\Rightarrow x=-1\)

\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)

\(\Rightarrow\dfrac{x+4}{2000}+1+\dfrac{x+3}{2001}+1=\dfrac{x+2}{2002}+1+\dfrac{x+1}{2003}+1\)

\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}=\dfrac{x+2004}{2002}+\dfrac{x+2004}{2003}\)

\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)

\(\Rightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

\(\Rightarrow x+2004=0\Rightarrow x=-2004\)

21 tháng 8 2017

a, \(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)

\(\Rightarrow\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\)

\(\Rightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)

Do \(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\ne0\)

\(\Rightarrow x+1=0\Rightarrow x=-1\)

Vậy x = -1

b, \(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)

\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)

\(\Rightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

\(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\ne0\)

\(\Rightarrow x+2004=0\Rightarrow x=-2004\)

Vậy...