\(\left(2x-\frac{1}{\sqrt{x}}\right)^{16}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
22 tháng 11 2021

\({\left( {2x - \frac{1}{{\sqrt x }}} \right)^{16}} = \sum\limits_0^{16} {C_{16}^k{{\left( {2x} \right)}^k}{{\left( {\frac{{ - 1}}{{\sqrt x }}} \right)}^{16 - k}}} = \sum\limits_0^{16} {C_{16}^k{{.2}^k}.{{\left( { - 1} \right)}^{16 - k}}.{x^k}.{{\left( {{x^{\frac{{ - 1}}{2}}}} \right)}^{16 - k}}} = \sum\limits_0^{16} {C_{16}^k{2^k}.{{\left( { - 1} \right)}^{16 - k}}.{x^{\frac{3}{2}k - 8}}} \)

Số hạng không chứa \(x\) khi: \(\frac{3}{2}k - 8 = 0 \Leftrightarrow k = \frac{{16}}{3}\)

Do đó số hạng không chứa \(x \) trong khai triển đã cho là \(0\).

NV
6 tháng 11 2019

\(\left(x^{-4}+x^{\frac{5}{2}}\right)^{12}\) có SHTQ: \(C_{12}^kx^{-4k}.x^{\frac{5}{2}\left(12-k\right)}=C^k_{12}x^{30-\frac{13}{2}k}\)

Số hạng chứa \(x^8\Rightarrow30-\frac{13}{2}k=8\Rightarrow\) ko có k nguyên thỏa mãn

Vậy trong khai triển trên ko có số hạng chứa \(x^8\)

b/ \(\left(1-x^2+x^4\right)^{16}\)

\(\left\{{}\begin{matrix}k_0+k_2+k_4=16\\2k_2+4k_4=16\end{matrix}\right.\)

\(\Rightarrow\left(k_0;k_2;k_4\right)=\left(8;8;0\right);\left(9;6;1\right);\left(10;4;2\right);\left(11;2;3\right);\left(12;0;4\right)\)

Hệ số của số hạng chứa \(x^{16}\):

\(\frac{16!}{8!.8!}+\frac{16!}{9!.6!}+\frac{16!}{10!.4!.2!}+\frac{16!}{11!.2!.3!}+\frac{16!}{12!.4!}=...\)

c/ SHTQ của khai triển \(\left(1-2x\right)^5\)\(C_5^k\left(-2\right)^kx^k\)

Số hạng chứa \(x^4\) có hệ số: \(C_5^4.\left(-2\right)^4\)

SHTQ của khai triển \(\left(1+3x\right)^{10}\) là: \(C_{10}^k3^kx^k\)

Số hạng chứa \(x^3\) có hệ số \(C_{10}^33^3\)

\(\Rightarrow\) Hệ số của số hạng chứa \(x^5\) là: \(C_5^4\left(-2\right)^4+C_{10}^3.3^3\)

29 tháng 11 2019

em không hiểu phần b ạ

18 tháng 12 2021

Cái này tui chưa học đâu nha bạn iu

20 tháng 12 2016

28

20 tháng 12 2016

bn giải rõ ra đi

NV
10 tháng 10 2019

\(P=\left(\frac{\left(\sqrt[3]{x}+1\right)\left(\sqrt[3]{x^2}-\sqrt[3]{x}+1\right)}{\sqrt[3]{x^2}-\sqrt[3]{x}+1}-\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)^{10}\)

\(=\left(\sqrt[3]{x}+1-\frac{\sqrt{x}+1}{\sqrt{x}}\right)^{10}=\left(\sqrt[3]{x}-\frac{1}{\sqrt{x}}\right)^{10}=\left(x^{\frac{1}{3}}-x^{\frac{-1}{2}}\right)^{10}\)

\(=\sum\limits^{10}_{k=0}C_{10}^k.\left(-1\right)^{10-k}.\left(x^{\frac{1}{3}}\right)^k.\left(x^{\frac{-1}{2}}\right)^{10-k}=\sum\limits^{10}_{k=0}C_{10}^k\left(-1\right)^{10-k}x^{\frac{5k-30}{6}}\)

Số hạng ko chứa x \(\Rightarrow\frac{5k-30}{6}=0\Rightarrow k=6\)

\(\Rightarrow C_{10}^6.\left(-1\right)^4=210\)

3 tháng 4 2017

Ta có: (x3 + )8= Ck8 x3(8 – k) ()k = Ck8 x24 – 4k

Trong tổng này, số hạng Ck8 x24 – 4k không chứa x khi và chỉ khi

⇔ k = 6.

Vậy số hạng không chứa x trong khai triển (theo công thức nhị thức Niu - Tơn) của biểu thức đã cho là C68 = 28.

3 tháng 8 2018

ta có : \(\left(2nx+\dfrac{1}{2nx^2}\right)^{3n}=\sum\limits^{3n}_{k=0}C^k_{3n}\left(2nx\right)^{3n-k}\left(\dfrac{1}{2nx^2}\right)^k\)

\(=\sum\limits^{3n}_{k=0}C^k_{3n}2^{3n-2k}\left(n\right)^{3n-2k}\left(x\right)^{3n-3k}\)

\(\Rightarrow\) tổng hệ số bằng : \(C^0_{3n}+C_{3n}^1+C^2_{3n}+...+C^{3n}_{3n}=64\)

\(\Leftrightarrow\left(1+1\right)^{3n}=64\Leftrightarrow2^{3n}=2^6\Rightarrow n=2\)

để có số hạng không chữa \(x\) không khai triển thì \(3n-3k=0\Leftrightarrow n=k\)

\(\Rightarrow\) hệ số của số hạng không chữa \(x\)\(C^2_6.2^2.2^2=240\)

vậy ...........................................................................................................................

13 tháng 11 2019

Mysterious Person bn ơi cho mik hỏi chút nha , tại sao ở trên có

23n-2kn3n-2k mà ở dưới phần tổng hệ số í lại ko có ....Mong bn giúp mik ...

6 tháng 4 2016

f(x)= \(\sum_{k=0}^{15}C_{15}^{k}(x^\frac{1}{3})^{15-k}.(2.x^{\frac{-1}{2}})^{k}\)

f(x)=\(\sum_{k=0}^{15}C_{15}^{k}.2^{k}.x^{ 5-\frac{5k}{6}}\)

Số hạng không chứa x tương ứng với k thỏa: 

\(5-\frac{5k}{6}=0\) <=> k = 6

Vậy hệ số của số hạng không chứa x là: \(C_{15}^{6}.2^{6}=320320\)

NV
5 tháng 11 2019

\(\left(x^{-\frac{2}{3}}+x^{\frac{3}{4}}\right)^{17}=\sum\limits^{17}_{k=0}C_{17}^k\left(x^{-\frac{2}{3}}\right)^k\left(x^{\frac{3}{4}}\right)^{17-k}=\sum\limits^{17}_{k=0}C_{17}^kx^{\frac{51}{4}-\frac{17}{12}k}\)

Số hạng thứ 13 \(\Rightarrow k=12\) là: \(C_{17}^{12}x^{-\frac{17}{4}}\)

b/ Xét khai triển:

\(\left(3-x\right)^n=C_n^03^n+C_n^13^{n-1}\left(-x\right)^1+C_n^23^{n-2}\left(-x\right)^2+...+C_n^n\left(-x\right)^n\)

Cho \(x=1\) ta được:

\(2^n=3^nC_n^0-3^{n-1}C_n^1+3^{n-2}C_n^2+...+\left(-1\right)^nC_n^n\)

À, đến đây mới thấy đề thiếu, biết rằng cái kia làm sao hả bạn?

6 tháng 11 2019

dòng phía dưới đó @Nguyễn Việt Lâm

NV
3 tháng 11 2019

\(\left(x+x^{-1}\right)^n=\sum\limits^n_{k=0}C_n^kx^k\left(x^{-1}\right)^{n-k}=\sum\limits^n_{k=0}C_n^kx^{2k-n}\)

Theo bài ra ta có: \(C_n^2-C_n^1=35\)

\(\Leftrightarrow\frac{n!}{2!\left(n-2\right)!}-\frac{n!}{\left(n-1\right)!}=35\)

\(\Leftrightarrow\frac{n\left(n-1\right)}{2}-n=35\)

\(\Leftrightarrow n^2-3n-70=0\Rightarrow n=10\)

Số hạng ko chứa x \(\Rightarrow2k-n=0\Rightarrow k=\frac{n}{2}=5\)

Số hạng đó là \(C_{10}^5\)