Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhiều cách
đặt x+1=y=> x=y-1
Biểu thức=(y-1)^30+(y-1)^4-(y-1)^1975+1
khai triển biêu thúc trên số hạng không chứa y là
1+1+1+1=4
ồ dư 4
Ta có :
(x + 3 ) (x+5)(x+7)(x+9) + 2033
= ( x2 + 12x + 27 ) (x2 + 12x + 35 ) + 2033
đặt x2 + 12x + 30 = a
Khi đó : (a - 3 ) ( a + 5 ) + 2033
= a2 + 2a - 15 + 2033
= a2 + 2a + 2018
Vậy số dư là 2018
có \(f\left(x\right)=\left(x+1\right)A\left(x\right)+5\)
\(f\left(x\right)=\left(x^2+1\right)B\left(x\right)+x+2\)
do f(x) chia cho \(\left(x+1\right)\left(x^2+1\right)\)là bậc 3 nên số dư là bậc 2. ta có \(f\left(x\right)=\left(x+1\right)\left(x^2+1\right)C\left(x\right)+ax^2+bx+c=\left(x+1\right)\left(x^2+1\right)C\left(x\right)+a\left(x^2+1\right)+bx+c-a\)
\(=\left(x^2+1\right)\left(C\left(x\right).x+C\left(x\right)+a\right)+bx+c-a\)
Vậy \(bx+c-a=x+2\Rightarrow\hept{\begin{cases}b=1\\c-a=2\end{cases}}\)
mặt khác ta có \(f\left(-1\right)=5\Leftrightarrow a-b+c=5\Rightarrow a+c=6\Rightarrow\hept{\begin{cases}a=2\\c=4\end{cases}}\)
vậy số dư trong phép chia f(x) cho \(x^3+x^2+x+1\)là \(2x^2+x+4\)
áp dụng định lí bezout
cho x-1 =0\(\Rightarrow\)x=1.thay x=1 vào số bị chia ta đc
130+14-11975+1
theo bezout thì số bị chia phải bằng 0 nên kết quả sẽ là số dư
1+1-1+1=2
vậy số dư là 2
dư 2