K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2016

Ta có: 1998 ≡ 0 (mod 111) => 1997 ≡ -1 (mod 111) và 1999 ≡ 1 (mod 111)

Nên ta có: 1997^1998 + 1998^1999 +1999^2000 ≡ 2 (mod 111) (1997^1998 + 1998^1999 +1999^2000 )10 ≡ 210 (mod 111)

Mặt khác ta có: 210 = 1024 ≡ 25 (mod 111) Vậy (1997^1998 + 1998^1999 +1999^2000 ) ^ 10 chia cho 111 có số dư là 25

15 tháng 2 2016

Tại sao 210=1024

Bạn ơi , bài này tra mạng có nhiều lắm 

17 tháng 1 2016

Mình làm cách khác được kết quả là 25 

Còn cách này mình chưa biết làm , mong các bạn giúp đỡ 

Đúng mình sẽ tick cho 2 tick

27 tháng 3 2016

1) A = 19971999 - 19971998

=> A = 19971998.(1997-1)

=> A = 19971998 . 1996

Vậy a chia hết cho 4 (vì 1996 chia hết cho 4)

27 tháng 3 2016

2) B = 19971998 - 19981999 

Mà 19971998 là số lẻ; 19981999

=> 19971998 - 19981999  là số lẻ

Vậy đề bài sai.

24 tháng 10 2017

mk ko bt 123

27 tháng 10 2017

buồn quá lúc sáng lại bị cô phê bình vì bài này

8 tháng 3 2017

TẦM NHƯ HƠI CĂNG

8 tháng 3 2017

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{\frac{1999}{1}+\frac{1998}{2}+\frac{1997}{3}+....+\frac{1}{1999}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2000}}{1+\left(\frac{1998}{2}+1\right)+\left(\frac{1997}{3}+1\right)+....+\left(\frac{1}{1999}+1\right)}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{\frac{2000}{2}+\frac{2000}{3}+\frac{2000}{4}+....+\frac{2000}{2000}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{2000\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}\right)}\)

\(=\frac{1}{2000}\)

11 tháng 1 2024

1, S1 = (-2) +  (-2) +..+ (-2).

Có SS (-2) là :

(1997 - 1) : 4 +1 = 500 (số ).

Tổng số (-2) là: 500 x (-2) = (-1000)

Bạn chờ mình làm tiếp nha

 

12 tháng 1 2024

Các bạn ơi làm giúp mình vs ạ,mình đang cần gấp lắm rồi!!!!HELP MEEEEEEEEEEEEEE