K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2015

ta có

2945 đồng dư 2(mod 9)

=>2945^2 đồng dư 32(mod 9)

Hay 2945^5 đồng dư 5(mod 9)

=>2945^5 - 3 đồng dư 2(mod 9)

Nếu bài làm của mình đúng thì tick nha bạn,cảm ơn nhiều.

 

13 tháng 3 2016

Ta có: 3= 1 (mod 5)

=>34n = 1n (mod 5)

=>34n.3 = 1.3 (mod 5)

=>34n+1 = 3 (mod 5)

=>34n+1+2 = 3+2 (mod 5)

=>P = 0 (mod 5)

Vậy P chia hết cho 5(đpcm)

 "=" là đồng dư nha

13 tháng 3 2016

ta có 34n+1+2=34n x 3 + 2= ...1 x 3 +2=...3+2=...5 chia hết cho 5

vậy p chia hết cho 5(đpcm)

15 tháng 10 2017

Có: 1020 = 10000...000 (trong đó số 10000...000 có 20 c/s 0)

=> 1020 có tổng của các c/s là 1

Mà 1 chia 3 và 9 đều dư 1

=> 1020 chia 3 và 9 dư 1.

1 tháng 1 2019

Có: 1020 = 10000...000 (trong đó số 10000...000 có 20 c/s 0)

=> 1020 có tổng của các c/s là 1

Mà 1 chia 3 và 9 đều dư 1

=> 1020 chia 3 và 9 dư 1.

NV
1 tháng 3 2022

\(3^{1996}=3.3^{1995}=3.\left(3^3\right)^{665}=3.27^{665}\)

Ta có: \(27\equiv1\left(mod13\right)\Rightarrow27^{665}\equiv1\left(mod13\right)\)

\(\Rightarrow3.27^{665}\equiv3\left(mod13\right)\)

Hay \(3^{1996}\) chia 13 dư 3

13 tháng 12 2015

2)\(S=5+5^2+...+5^{2012}=\left(5+5^2+5^3+5^4\right)+...+\left(5^{2009}+5^{2010}+5^{2011}+5^{2012}\right)\)\(S=780+5^{2008}.780\)

\(S=12.65+...+5^{2008}.12.65\) chia hết cho 65

31 tháng 1 2020

Bài giải

a) Ta có: A = 550 - 548 + 546 - 544 +...+ 56 - 54 + 52 - 1

=> A = (550 - 548) + (546 - 544) +...+ (56 - 54) + (52 - 1)

=> A = (548.52 - 548.1) + (544.52 - 544.1) +...+ 

(54.52 - 54.1) + 50.(52 - 1)

=> A = 548.(52 - 1) + 544.(52 - 1) +...+ 54.(52 - 1) +

50.(52  - 1)

=> A = (52 - 1).(548 + 544 +...+ 54 + 50)

15 tháng 3 2018

1, Dễ thấy : \(5^2=25\equiv1\left(mod12\right)\)                                         \(7^2=49\equiv1\left(mod12\right)\)

             \(\rightarrow\left(5^2\right)^{35}\equiv1^{35}\left(mod12\right)\)                                     \(\rightarrow\left(7^2\right)^{35}\equiv1^{35}\left(mod12\right)\)

           \(\rightarrow5^{70}\equiv1\left(mod12\right)\)                                                 \(\rightarrow7^{70}\equiv1\left(mod12\right)\)

Vậy \(5^{70}:12\left(dư1\right)\) và \(7^{70}:12\left(dư1\right)\)Vậy \(\left(5^{70}+7^{70}\right):12\left(dư2\right)\)

Bài 2 :  Ta có : 3012 = 13.231 + 9

Do đó: 3012 đồng dư với 9 (mod13)

=> \(3012^3\)đồng dư với \(9^3\left(mod13\right)\). Mà \(9^3=729\)đồng dư với 1 (mod13)

=> \(3012^3\)đồng dư với 1 (mod13)

Hay \(3012^{93}\)đồng dư với 1 (mod13)

=> \(3012^{93}-1\)đồng dư với 0 (mod13)

Hay \(3012^{93}-1⋮13\left(đpcm\right)\)