Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em học đồng dư thức chưa
Học r thì dùng đồng dư nhé ( ko bt đánh dấu đồng dư nên viết tắt là dd nhé )
2135 dd 3 ( mod 13 ) => 213597 dd 397 ( mod 13)
Lại có 397 = (33)32.3 mà 33 = 27 dd 1 (mod 13) => (33)32 dd 1 (mod 13) => 397 dd 3 ( mod 13)
vì 2135 :13 = 164 ( dư 3)
ma UCLN (97;13)=1
=> 213597:13 du 3
A = 73 + 74 + 75 + ... + 797 + 798
A = ( 73 + 74 ) + ( 75 + 76 ) + ... + ( 797 + 798 )
A = 73 . ( 1 + 7 ) + 75 . ( 1 + 7 ) + ... + 797 . ( 1 + 7 )
A = 73 . 8 + 75 . 8 + ... + 797 . 8
A = 8 . ( 73 + 75 + ... + 797 ) \(⋮8\)
Vậy A chia hết cho 8 ( dpcm )
\(99-97+95-93+91-89+...+7-5+3-1\)
\(=\left(99-97\right)+\left(95-93\right)+...\left(7-5\right)+\left(3-1\right)\)
\(=2.25\)
\(=50\)
ta thấy
\(4000:82=48\) ( dư 674)
số \(64>47\Rightarrow\) số bị chia < 4000 là :
\(82.48+47=3983\)
vì 3983<4000 ( t/m)
=> số chia là 48
2135 đồng dư với 3 (mod13)
=> 213597 đồng dư với 397 (mod13)
33 = 27
đồng dư với 1 (mod13)
=> (33)32.3 đồng dư với 132.3= 3 (mod13)
=> 213597 đồng dư với 3
=> 213597 chia hết cho 13
Vậy: 213597 chia hết cho 13
ths