Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) S = 1 + 2 + 22 + ... + 2100
S = 1 + ( 2 + 22 ) + ... + ( 299 + 2100 )
S = 1 + 2 . ( 1 + 2 ) + ... + 299 . ( 1 + 2 )
S = 1 + 2 . 3 + ... + 299 . 3
S = 1 + 3 . ( 2 + ... + 299 )
Vậy S chia 3 dư 1
b) tương tự : ( ghép 5 số )
\(\left(\frac{4}{9}\right)^n=\left(\frac{2}{3}\right)^5\)
<=>\(\left(\frac{2}{3}\right)^{\frac{n}{2}}=\left(\frac{2}{3}\right)^5\)
<=>\(\frac{n}{2}=5\)
<=>n=10
\(\left(\frac{4}{9}\right)^n=\left(\frac{2}{3}\right)^5\)
\(\Rightarrow\left(\frac{2}{3}\right)^{2n}=\left(\frac{2}{3}\right)^5\)
\(\Rightarrow2n=5\Rightarrow n=\frac{5}{2}\)
Vậy n = 5/2
#)Giải :
\(A=\frac{1}{101^2}+\frac{1}{102^2}+\frac{1}{103^2}+\frac{1}{104^2}+\frac{1}{105^2}\)
\(A< \frac{1}{100.101}+\frac{1}{101.102}+\frac{1}{102.103}+\frac{1}{103.104}+\frac{1}{104.105}\)
\(A< \frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+\frac{1}{102}-\frac{1}{103}+\frac{1}{103}-\frac{1}{104}+\frac{1}{104}-\frac{1}{105}\)
\(A< \frac{1}{100}-\frac{1}{105}\)
\(A< \frac{1}{2100}=\frac{1}{2^2.3.5^2.7}\)
\(\Rightarrow A< B\)
P/s : Hình như viết sai đề ở chỗ 32 thì phải ??? Bài tui làm là đã sửa lại đề rùi nhé !
Tổng A có 2012 số hạng. Nhóm 4 số thành 1 nhóm. Ta có:
A = (2+22+23+24)+(25+26+27+28)+.......+(22009+22010+22011+22012)
A = 2(1+2+22+23)+25(1+2+22+23)+.....+22009(1+2+22+23)
A = 2.15 + 25.15 +.....+22009.15
A = 15 (2+25+.....+22009) chia hết cho 15
=> A chia 15 dư 0
\(2^{101}:5=2^{100}.2:5=16^{25}.2:5=\left(....2\right):5\) số dư là 2