Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=2+22+23+...+298+299+2100
=>A=(2+22+23)+...+(298+299+2100)
=>A=2.(1+2+22)+...+298.(1+2+22)
=>A=2.7+...+298.7
=>A=7.(2+...+298)
=>A chia hết cho 7
=>A chia 7 dư 0
\(1+2+3+...+98+99+100\)
\(=\frac{\left(100+1\right)\left[\left(100-1\right):1+1\right]}{2}\)
\(=\frac{101.100}{2}=5050\)
Mà 5050 chia 9 dư 1
chia thành từng bộ ba thì tổng của 99 số hạng sau chia hết cho 7
2 + (2\(^2\)+2\(^3\)+2\(^4\)) +..+ (2\(^{98}\)+2\(^{99}\)+2\(^{100}\))
2 + 7.2\(^2\) +..+ 7.2\(^{98}\) => A chia 7 dư 2
A=1+(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+......+(2^97+2^98+2^99+2^100)
=1+ 30+2^5.(2+2^2+2^3+2^4)+.......+2^97.(2+2^2+2^3+2^4)
=1+30+2^5.30+.....+2^97.30 không chia hết cho 30 ( bạn viết kí hiệu ko chia hết nha)
=> A : 30 dư 1
gọi tích là s ta có
S = 1- 3 + 3^2 - 3^3 + 3^4 - ... + 3^98 - 3^99
3S=3-3^2+3^3-3^4+......3^99-3^100
==> 3S-S=2S=1-3^100
S=\(\frac{1-3\text{^}100}{2}\)
a) 2^1 + 2^2 +2^3 +....+2^99+2^100 chia hết cho 3
(2^1 + 2^2) + (2^3+2^4)+.....+(2^99+2^100)
2.(1+2)+2^3.(1+2)+....+2^99(1+2)
(2+2^3+...+2^99).(1+2)
(2+2^3+...+2^99).3
Vì 3 chia hết cho 3 nên (2+2^3+...+2^99).3 chia hết cho 3
hay 2^1 + 2^2 +2^3 +....+2^99+2^100 chia hết cho 3