Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\sqrt{\dfrac{16}{9}\cdot\dfrac{4}{100}}=\dfrac{4}{3}\cdot\dfrac{2}{10}=\dfrac{4}{3}\cdot\dfrac{1}{5}=\dfrac{4}{15}\)
b: \(=\sqrt{0.09\cdot0.09}\cdot\sqrt{1.21\cdot0.4}\)
\(=0.09\cdot\dfrac{11\sqrt{10}}{50}=\dfrac{99\sqrt{10}}{5000}\)
c: \(=\dfrac{9\sqrt{2}-14\sqrt{2}+6\sqrt{2}}{\sqrt{2}}=9+6-14=1\)
2)
a)Thay m = 2 vào hệ, ta được :
HPT :\(\hept{\begin{cases}2x+4y=2+1\\x+\left(2+1\right)y=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+4y=3\left(^∗\right)\\x+3y=2\left(^∗^∗\right)\end{cases}}\)
Lấy (*) trừ (**), ta được :
\(2x+4y-x-3y=3-2\)
\(\Leftrightarrow x+y=1\)(***)
Lấy (**) trừ (***), ta được :
\(\Leftrightarrow x+3y-x-y=2-1\)
\(\Leftrightarrow2y=1\)
\(\Leftrightarrow y=\frac{1}{2}\)
\(\Leftrightarrow x=1-\frac{1}{2}=\frac{1}{2}\)
Vậy với \(m=2\Leftrightarrow\left(x;y\right)\in\left\{\frac{1}{2};\frac{1}{2}\right\}\)
b) Thay \(\left(x;y\right)=\left(2;-1\right)\)vào hệ, ta được :
HPT :\(\hept{\begin{cases}2m-2m=m+1\\2-\left(m+1\right)=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m+1=0\\m+1=0\end{cases}}\)
\(\Leftrightarrow m=-1\)
Vậy với \(\left(x,y\right)=\left(2;-1\right)\Leftrightarrow m=-1\)
e ) \(\left(5\sqrt{2}-2\sqrt{5}\right)\left(5\sqrt{2}+2\sqrt{5}\right)=\left(5\sqrt{2}\right)^2-\left(2\sqrt{5}\right)^2\)
\(=50-20=30\)
f ) \(\sqrt{27^2-23^2}=\sqrt{\left(27+23\right)\left(27-23\right)}\)
\(=\sqrt{50.4}=\sqrt{200}=10\sqrt{2}\)
g ) \(\sqrt{37^2-35^2}=\sqrt{\left(37+35\right)\left(37-35\right)}=\sqrt{72.2}=\sqrt{144}=12\)
Đặt : \(\hept{\begin{cases}a=\frac{3-\sqrt{37}}{2}\\b=\frac{3+\sqrt{37}}{2}\end{cases}\Rightarrow\hept{\begin{cases}a+b=3\\ab=7\end{cases}\Rightarrow}a,b}\)là nghiệm của PT : \(x^2-3x-7=0\)
Ta cần chứng minh : \(\left(\frac{3-\sqrt{37}}{2}\right)^n+\left(\frac{3+\sqrt{37}}{2}\right)^n=a^n+b^n\in Z\)( * )
Thật vậy :
\(+n=1\)( * ) đúng
Giả sử * đúng vs n = k nghĩa là : \(a^k+b^k\in Z\)
Vậy ta cần CM : \(a^{k+1}+b^{k+1}\in Z\)
Do \(a^{k+1}+b^{k+1}=\left(a^k+b^k\right)\left(a+b\right)-ab\left(a^{k-1}+b^{k-1}\right)\)
Mà \(\hept{\begin{cases}a^k+b^k\in Z\\a^{k-1}+b^{k-1}\in Z\\ab\in Z\end{cases}}\Rightarrow a^{k+1}+b^{k+1}\in Z\)
Vậy * đúng với mọi n nguyên dương
ĐỀ THIẾU số mũ 2010 kìa
Đặt \(a=\frac{3-\sqrt{37}}{2},b=\frac{3+\sqrt{37}}{2}\)
Có \(\hept{\begin{cases}ab=-14\in Z\\a+b=3\in Z\end{cases}}\)
ta đi c/m bổ đề vs a+b nguyên, ab nguyên thì a^n+b^n nguyên,
c/m:Có \(a^n+b^n=\left(a+b\right)^n-\text{ C1n a^(n-1)b + C2n a^(n – 2)b^2 + … + Cnn – 1 ab^(n – 1) }\)
Do a+b nguyên , ab nguyên nên a^n+b^n nguyên
áp dụng bài toán trên với n=2010 => dpcm
với Cnn là tổ hợp châp n của n với n chyaj từ 1 đến n
1/ a/ \(\sqrt{\left(6+2\sqrt{5}\right)^3}-\sqrt{\left(6-2\sqrt{5}\right)^3}\)
\(=\sqrt{\left(\sqrt{5}+1\right)^6}-\sqrt{\left(\sqrt{5}-1\right)^6}\)
\(=\left(\sqrt{5}+1\right)^3-\left(\sqrt{5}-1\right)^3\)
\(=32\)
b/ \(\sqrt{\left(3-2\sqrt{2}\right)\left(4-2\sqrt{3}\right)}\)
\(=\sqrt{\left(\sqrt{2}-1\right)^2\left(\sqrt{3}-1\right)^2}\)
\(=\left(\sqrt{2}-1\right)\left(\sqrt{3}-1\right)\)
\(=\sqrt{6}-\sqrt{2}-\sqrt{3}+1\)
Câu 3/ \(A=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2+\sqrt{2}}}}}\)
\(< \sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2+\sqrt{4}}}}}=2\)
Ta lại có:
\(A=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2+\sqrt{2}}}}}>\sqrt{2}>1\)
\(\Rightarrow1< A< 2\)
Vậy \(A\notin N\)
a) \(\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}=\sqrt{2}+\sqrt{3}\)
b) \(\sqrt{\left(\sqrt{3}-2\right)^2}=\sqrt{3}-2\)
c) \(\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\sqrt{5}-\sqrt{3}+\sqrt{5}+\sqrt{3}\)\(=2\sqrt{5}\)
d) \(\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}-\sqrt{\left(1-\sqrt{3}\right)^2}=\sqrt{2}-\sqrt{3}-1-\sqrt{3}\)
\(=\sqrt{12}-\sqrt{2}-1\)
e) \(\sqrt{\left(\sqrt{3-1}^2\right)-\sqrt{3}}=\sqrt{\sqrt{2}^2-\sqrt{3}}=\sqrt{2-\sqrt{3}}\)
P/S: Ko chắc
\(A=x^{37}+y^{37}\)
\(x.y=1\)
\(x+y=4\)
\(x^2+y^2=\left(x+y\right)^2-2xy=14\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=4^3-3.4=52\)
tính đến \(x^{18}+y^{18}=m\) và \(x^{19}+y^{19}=n\)=> A chia 2053 dư 5
làm hộ mình đi, mình cần gấp