Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm số dư khi chia A= \(a^{2n}+a^n+1\) cho \(a^2+a+1\) với mọi số tự nhiên n và a thuộc Z, \(a\ne1\)
Bài 1:
cho a2 + b2 ⋮ 3 cm: a ⋮ 3; b ⋮ 3
Giả sử a và b đồng thời đều không chia hết cho 3
Vì a không chia hết cho 3 nên ⇒ a2 : 3 dư 1
vì b không chia hết cho b nên ⇒ b2 : 3 dư 1
⇒ a2 + b2 chia 3 dư 2 (trái với đề bài)
Vậy a; b không thể đồng thời không chia hết cho ba
Giả sử a ⋮ 3; b không chia hết cho 3
a ⋮ 3 ⇒ a 2 ⋮ 3
Mà a2 + b2 ⋮ 3 ⇒ b2 ⋮ 3 ⇒ b ⋮ 3 (trái giả thiết)
Tương tự b chia hết cho 3 mà a không chia hết cho 3 cũng không thể xảy ra
Từ những lập luận trên ta có:
a2 + b2 ⋮ 3 thì a; b đồng thời chia hết cho 3 (đpcm)
Câu 1 bạn dùng chia hết cho 13
Câu 2 bạn cộng cả 2 vế với z^4 rồi dùng chia 8
Câu 3 bạn đặt a^4n là x thì x sẽ chia 5 dư 1 và chia hết cho 4 hoăc chia 4 dư 1
Khi đó ta có x^2+3x-4=(x-1)(x+4)
đến đây thì dễ rồi
Câu 4 bạn xét p=3 p chia 3 dư 1 p chia 3 dư 2 là ra
Câu 6 bạn phân tích biểu thức của đề thành nhân tử có nhân tử x-2
Câu 5 mình nghĩ là kẹp giữa nhưng chưa ra
\(b,n^2\left(n^4-1\right)\)
\(=n^2\left(n^2+1\right)\left(n^2-1\right)\)
Ta có:\(n^2-1;n^2;n^2+1\) là 3 số nghuyên liên tiếp
\(\Rightarrow n^2\left(n^2+1\right)\left(n^2-1\right)⋮60\)
\(\Rightarrowđpcm\)
=>
câu 2
Ta có: P(0)=d =>d chia hết cho 5 (1) P(1)=a+b+c+d =>a+b+c chia hết cho 5 (2) P(-1)=-a+b-c+d chia hết cho 5 Cộng (1) với (2) ta có: 2b+2d chia hết cho 5 Mà d chia hết cho 5 =>2d chia hết cho 5 =>2b chia hết cho 5 =>b chia hết cho 5 P(2)=8a+4b+2c+d chia hết cho 5 =>8a+2c chia hết cho 5 ( vì 4b+d chia hết cho 5) =>6a+2a+2c chia hết cho 5 =>6a+2(a+c) chia hết cho 5 Mà a+c chia hết cho 5 (vì a+b+c chia hết cho 5, b chia hết cho 5) =>6a chia hết cho 5 =>a chia hết cho 5 =>c chia hết cho 5 Vậy a,b,c chia hết cho 5 cho mình 1tk nhé
1b)
Đặt 2014+n2=m2(m∈Z∈Z,m>n)
<=>m2-n2=2014<=>(m+n)(m-n)=2014
Nhận thấy:m và n phải cùng chẵn hoặc cùng lẻ
Suy ra m+n và m-n đều chẵn,m+n>m-n
Mà 2014=2.19.53=>m+n và m-n không cùng chẵn
=>không có giá trị nào thoả mãn
tk mình nhé
TH1: n = 3k , k là số tự nhiên.
Có: \(A=a^{6k}+a^{3k}+1=\left(a^{6k}-1\right)+\left(a^{3k}-1\right)+3\)
\(=\left(a^{3k}-1\right)\left(a^{3k}+1\right)+\left(a^{3k}-1\right)+3=\left(a^{3k}-1\right)\left(a^{3k}+2\right)+3\)
lại có: \(a^{3k}-1=\left(a^3\right)^k-1⋮a^3-1\) và \(a^3-1⋮a^2+a+1\)
=> \(a^{3k}-1⋮a^2+a+1\)
=> \(\left(a^{3k}-1\right)\left(a^{3k}+2\right)⋮a^2+a+1\)
=> \(A:a^2+a+1\) dư 3, với mọi a khác -2; -1; 0; 1.
TH2: n = 3k + 1, k là số tự nhiên.
Có: \(A=a^{6k+2}+a^{3k+1}+1=a^2\left(a^{6k}-1\right)+a\left(a^{3k}-1\right)+\left(a^2+a+1\right)\)
\(=a^2\left(a^{3k}-1\right)\left(a^{3k}+1\right)+a\left(a^{3k}-1\right)+\left(a^2+a+1\right)\)
\(=\left(a^{3k}-1\right)\left[a^2\left(a^{3k}+1\right)+a\right]+\left(a^2+a+1\right)⋮a^2+a+1\)
Vì \(a^{3k}-1⋮a^2+a+1;a^2+a+1⋮a^2+a+1\)
=> \(A⋮a^2+a+1\)
hay \(A:a^2+a+1\) dư 0
TH3: n = 3k +2, k là số tự nhiên
Có: \(A=a^{6k+4}+a^{3k+2}+1=a^4\left(a^{6k}-1\right)+a^2\left(a^{3k}-1\right)+\left(a^4+a^2+1\right)\)
\(=a^4\left(a^{3k}+1\right)\left(a^{3k}-1\right)+a^2\left(a^{3k}-1\right)+\left(a^4+2a^2+1\right)-a^2\)
\(=\left(a^{3k}-1\right)\left[a^4\left(a^{3k}+1\right)+a^2\right]+\left(a^2-a+1\right)\left(a^2+a+1\right)⋮a^2+a+1\)
=> \(A:a^2+a+1\) dư 0.
Kêt luận: Với n là số tự nhiên chia hết cho 3, a là số nguyên khác -2; -1 ; 0; 1 thì A chia cho a^2 +a +1 dư 3
n là số tự nhiên không chia hết cho 3, a là số nguyên bất kì thì A chia cho a^2 +a +a dư 0.
.
.